
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Geometric Phase Contribution to Quantum Nonequilibrium
Many-Body Dynamics

Michael Tomka, Anatoli Polkovnikov, and Vladimir Gritsev
Phys. Rev. Lett. 108, 080404 — Published 23 February 2012

DOI: 10.1103/PhysRevLett.108.080404

http://dx.doi.org/10.1103/PhysRevLett.108.080404


LH13376

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N
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We study the influence of geometry of quantum systems underlying space of states on its quantum
many-body dynamics. We observe an interplay between dynamical and topological ingredients of
quantum non-equilibrium dynamics revealed by the geometrical structure of the quantum space of
states. As a primary example we use the anisotropic XY ring in a transverse magnetic field with an
additional time-dependent flux. In particular, if the flux insertion is slow, non-adiabatic transitions
in the dynamics are dominated by the dynamical phase. In the opposite limit geometric phase
strongly affects transition probabilities. We show that this interplay can lead to a non-equilibrium
phase transition between these two regimes. We also analyze the effect of geometric phase on defect
generation during crossing a quantum critical point.

PACS numbers:

Introduction.—The profound interplay and interrela-
tion of geometry and physics was the focus in both fields
since creation of General Theory of Relativity, in which
quantities responsible for the geometry of space-time are
determined by the physical properties of the matter living
in this space and vice versa. The relevant geometry lan-
guage in this case is a Riemannian geometry. Gauge prin-
ciple of classical gauge theories found its natural descrip-
tion and nice interpretation in terms of theory of fiber
bundles, a subject of differential geometry [1]. Monopoles
and instantons of the gauge theory have profound topo-
logical meanings which is the property of defining fiber
bundle. Many of these notions appeared in various con-
densed matter systems at equilibrium. Thus, defects in
He and liquid crystals are classified according to the ho-
motopy theory, certain phase transitions are associated
to proliferation of topological defects. Topology plays a
vital role in e.g. Hall effects and topological insulators.

Another intriguing phenomena, emerging in quantum
mechanics, that relates geometry and physics is the Berry
phase. When a Hamiltonian is adiabatically driven, its
eigenstates acquire not only the familiar dynamical phase
factor, but additionally a phase factor that depends only
on the geometry of the phase space of the Hamiltonian,
namely the Berry phase [2]. It can be observed in inter-
ference experiments and in the Aharonov-Bohm effect.
The deep geometrical significance of the Berry phase was
revealed as well [3]. Therefore, it is also referred to as
the geometric phase. We point that while the Berry
phase is usually associated with adiabatic processes, the
geometric phases describe transformations of arbitrary
eigenstates and are thus not tied to the adiabaticity. In
condensed matter probably its most transparent man-
ifestation is in the Haldane phenomena (a presence or
absence of the excitation gap in 1D spin chain depending
on the value of spins).

Until now all these manifestations of the geometric
phase were associated to equilibrium and adiabatic phe-
nomena. Here we demonstrate for the first time a direct

relevance of topology and geometry of the quantum space
of the many body system for the measurable quantities
defining a non-equilibrium evolution of the system far
from the adiabatic limit. We show that these effects are
very significant in the regions close to the quantum phase
transition. We thus demonstrate a profound interplay of
geometry and topology of the phase space of the quantum
many-body system in its out of equilibrium dynamics.
In equilibrium, a Riemannian structure is introduced

to quantum mechanics by the Quantum Geometric Ten-
sor (QGT) [4],[5]. The QGT Qµν is defined for an arbi-
trary eigenstate |n〉 by

Qµν(λ, |n〉) := 〈n|
←−
∂µ∂ν |n〉 − 〈n|

←−
∂µ|n〉〈n|∂ν |n〉, (1)

for µ, ν = 1, . . . , p, labeling the system’s parameters λµ
which form a manifold M. Its real part is a Rieman-
nian metric tensor gµν on M that is related to the fi-
delity susceptibility which describes the systems response
to a perturbation and therefore is an important quan-
tity, e.g. in the study of Quantum Phase Transitions
(QPT) [5]. The imaginary part is related to the 2-form
(Berry curvature) Fµν := ∂µAν − ∂νAµ = 2ℑQµν, where
Aµ(λ, |n〉) := i〈n|∂µ|n〉 is the connection 1-form. Geo-
metric phase [2] of the state |n〉 is given by its integral
along a closed loop C in parameter space γn =

∫

C
Aµdλ

µ.
It is easy to check that after a simple gauge transforma-
tion, the Schrödinger equation i ˙|ψ〉 = Ĥ|ψ〉 written in the
instantaneous basis |n〉 such that |ψ〉 = ∑

n an|n〉 can be
put into the following form:

ȧn = −
∑

m 6=n

Mnm exp [iEnm(t)− iΓnm(t)] am, (2)

where Mnm = 〈n|∂t|m〉. This equation highlights the
competition between the dynamical phase Enm(t) =
∫ t

0 [ǫn(τ) − ǫm(τ)] dτ and the geometric phase Γnm(t) =
∫ t

0 [Aτ (|n〉)−Aτ (|m〉)] dτ .
The main purpose of the present work is to demon-

strate how geometric effects shows up in quantum dy-
namics. We do it using an example of a driven XY-model
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which we introduce in the next paragraph. Generaliza-
tions of some of our results to more generic setups are
discussed in the Supplementary Information [6]. The
main findings of our paper is that geometric phase ef-
fects on transition probabilities are small for slow nearly
adiabatic driving protocols, i.e. that the leading non-
adiabatic transitions are determined by the dynami-
cal phase. Contrary, in the fast limit geometric phase
strongly affects transitions between different levels. We
also found that the interplay of geometric and dynami-
cal phases can lead to non-equilibrium phase transitions
causing sharp singularities in density of excited quasi-
particles and pumped energy as a function of the driv-
ing velocity. This quantum-critical behavior can happen
without undergoing by the system an actual quantum
phase transition in the instantaneous basis [7]. In the
limit of slowly driving the system through a quantum
critical point with an additional rotation in the parame-
ter space we find that the geometric phase modifies the
scaling of the observables with the driving velocity and
enhances non-adiabatic effects.
The rotated XY spin chain.—Let us consider a stan-

dard, although rich and illustrative example of XY ring
in a transverse magnetic field. The Hamiltonian of this
system [8, 9] is defined by

Ĥ0 = −
N
∑

l=1

[

1 + g

2
σ̂x
l σ̂

x
l+1 +

1− g
2

σ̂y
l σ̂

y
l+1 + hσ̂z

l

]

(3)

with periodic boundary conditions, i.e., σ̂α
N+1 = σ̂α

1 . The
number of spins N is assumed to be even and the spin 1/2
on the site l is represented by the usual Pauli matrices
σ̂α
l , with α ∈ {x, y, z}. Further, the anisotropy for the

nearest neighbor spin-spin interaction along the x and y
axis is described by the parameter g and h denotes the
magnetic field along the z axis.
At g = 0 this Hamiltonian has an additional U(1) sym-

metry related to spin-rotations in theXY -plain. At finite
g this symmetry is broken. Clearly there is a continu-
ous family of ways breaking this symmetry yielding the
identical spectrum. The corresponding Hamiltonians are
related by applying a unitary rotation of all the spins
around the z axis by angle φ:

Ĥ(g, h, φ) = R̂(φ, z)Ĥ0(g, h)R̂
†(φ, z), (4)

with the rotation operator R̂(φ, z) =
∏N

l=1 exp(−iφ2 σ̂z
l ).

This transformation yields non-trivially complex instan-
taneous eigenstates, which is a necessary condition for
existence of the nontrivial geometric phase [10].
The Hamiltonian (4) can be diagonalized using the

Jordan-Wigner and the Fourier transformations:

Ĥ(g, h, φ) = −
∑

k
ĉ
†
kĤkĉk, (5)

with Ĥk = (h− cos pk)σ̂
z + g sin pk(sin 2φσ̂

x − cos 2φσ̂y),

ĉ
†
k = (ĉ−k, ĉ

†
k), pk = 2πk

N
, k = ±1,±2, . . . ,±N

2 and

ĉk are the Fourier transforms of the fermionic op-
erators resulting from the Jordan-Wigner transforma-
tion (see Ref. [11] for details). By applying the Bo-
goliubov transformation to (5) we can map it to a
free fermionic Hamiltonian with the known spectrum

ǫk(g, h) =
√

(h− cos pk)2 + g2 sin2 pk.

The set of quantum critical points of this spin chain are
determined by the vanishing of the energy gap: 2ǫk0

= 0,
where k0 is defined by minimizing the excitation energy
∂kǫk = 0. This condition defines quantum critical regions
on M. For the model (4) the gap vanishes on the line
(g = 0, −1 ≤ h ≤ 1), marking the anisotropic transition
and on the two planes (g ∈ R, h = ±1), identifying the
Ising transitions [9, 12]. The anisotropic transition line
belongs to the Lifshitz universality class since it manifests
the critical exponents ν1 = 1/2 and z1 = 2. On the other
hand the Ising transition planes belong to the d = 2 Ising
universality class with the critical exponents ν2 = 1 and
z2 = 1 [12]. The points where the critical line and the
critical plane cross are multicritical points. In Fig. 1 we
depict the equilibrium phase diagram of the rotated XY
spin chain in the parameter space (g, h, φ).

Figure 1: The phase diagram of the rotated XY spin chain
in a transverse magnetic field in cylindrical coordinates: The
two red planes (h = ±1) indicate the Ising critical plane, (i.e.
the associated QPT belongs to the d = 2 Ising universality
class). Whereas the blue line (g = 0) marks the anisotropic
transition line. The black bold circle and helix describe the
two driving protocols we use in this paper.

Dynamics of the rotated XY spin chain.—We explore
two driving protocols. The first one is driving the spin
rotation φ(t) with a constant velocity. This corresponds
to circular paths in parameter space (see Fig. 1). It is the
simplest situation in which a non-trivial geometric phase
emerges. The second driving protocol consists of driving
the magnetic field h(t) and the spin rotation φ(t). This
results in helical paths in parameter space (Fig. 1) and
allows us to study the cross over from the well known
Landau-Zener scenario (no geometric phase) to the ro-
tating driving regime (non-trivial geometric phase).
For either of the protocols we assume φ(t) = ωt in

the time interval 0 < t < tf , where ω > 0 is the rate
of change of the spin rotation. Then the Schrödinger
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equation for the coefficients a1,k and a2,k, that appear
in the expansion of state in the instantaneous basis,
|ψ〉k = a1,k|gs〉k + a2,k|es〉k, becomes a system of linear
differential equations with constant coefficients that can
be solved exactly (see the Supplementary Material [6]).
From this solution we compute the probability for finding
the system in the excited state

pex,k = |a2,k(φf )|2 = gφφ(|gs〉k)
sin2

[

1
2Ωk(ω)φf

]

[

1
2Ωk(ω)

]2 . (6)

Here Ωk(ω) :=

√

[

∆ǫk
ω
−∆Aφ,k

]2
+ 4gφφ(|gs〉k), ∆ǫk :=

ǫes,k − ǫgs,k = 2ǫk is the energy difference between
the excited and ground states of the k-th subspace
and ∆Aφ,k := Aφ(|es〉k) − Aφ(|gs〉k) designates the
corresponding difference of the connection 1-forms:
Aφ(|gs〉k) = ik〈gs|∂φ|gs〉k and Aφ(|es〉k) = ik〈es|∂φ|es〉k.
Further, gφφ(|gs〉k) is the Riemannian metric tensor of
the k-th ground state, which also defines the fidelity sus-
ceptibility along the φ direction:

gφφ(|gs〉k) = −k〈gs|∂φ|es〉kk〈es|∂φ|gs〉k = |k〈es|∂φ|gs〉k|2 .

With this the total density of excited quasi-particles and
the energy density of excitations of the entire spin chain
in the thermodynamic limit can be calculated by

nex =

∫ π

−π

dk

2π
pex,k, ǫex =

∫ π

−π

dk

2π
2ǫkpex,k. (7)

Before proceeding with the detailed analysis of these
two quantities let us make some qualitative remarks on
Eq. (6). (i) For the quench of infinitesimal amplitude
φf → 0 both geometric and dynamical phases are not
important and the transition probability is simply given
by the product of the square of the quench amplitude
and the fidelity susceptibility in agreement with gen-
eral results [13]. (ii) In the slow limit ω ≪ ∆ǫk and
fixed φf & 1 the geometric phase is still not impor-
tant while the dynamical phase suppresses the transi-
tions between levels such that pex,k ∝ gφφ(|gs〉k)ω2/ǫ2k.
This result is again in perfect agreement with the gen-
eral prediction for linear quenches in the absence of geo-
metric phase [13] given that in this case ω is the velocity
of the quench. (iii) The most interesting and nontriv-
ial situation where the geometric phase strongly affects
the dynamics occurs when both the rotation frequency
and rotation angle are not small: ω & ∆ǫk, φf & 1.
In particular, in the limit ω → ∞ and φf = πn we
recover pex,k = 0. This trivial physical fact that in-
finitely fast rotation can not cause transitions between
levels actually comes from the mathematical identity:
(∆Aφ,k)

2 + 4gφφ(|gs〉k) = [Tr(∂φ)]
2 = 4. For large but

finite ω and φf = πn, we find

pex,k ≈ gφφ(|gs〉k) sin2
[

∆ǫk∆Aφ,k

2ω
φf

]

. (8)

If the rotation angle is not large n ∼ 1 we see that the
transition probability in this case is directly proportional
to the square of the product of the geometric and dynam-
ical phase differences between the ground and excited
states:

pex,k ≈ gφφ(|gs〉k)
[

∆Ek∆γφ,k
4π

]2

, (9)

where ∆γφ,k = ∆Aφ,kφf =
∫ φf

0
Aφ,kdφ and ∆Ek =

∆ǫkT ; T = 2π/ω is the rotation period. In the limit
of large rotation angle at fixed frequency ∆Ek ≪ 1 and
φf∆Ek ≫ 1 the expression for the transition probabil-
ity saturates at a value independent of the geometric
and dynamical phases: pex ∼ gφφ(|gs〉k)/2. Interestingly
this probability is entirely determined by the Riemannian
metric tensor, i.e. has a purely geometric interpretation.
From the discussion above we see that if we focus on

the limit of large φf and analyze the transition proba-
bility as a function of ω we expect a smooth crossover
between two simple regimes both independent of the geo-
metric phase: pex,k ∼ gφφ(|gs〉k)ω2/∆ǫ2k at ω ≪ ∆ǫk and
pex,k ∼ gφφ(|gs〉k)/2 at ω ≫ ∆ǫk. A similar crossover
between fast and slow regimes is expected in the many-
particle situation. Thus one can naively expect that the
influence of the geometric phase on the dynamics in the
limit of large φf is quite limited. The reality turns out to
be much more interesting though as we illustrate below.
In this limit we can simplify the k integrals in Eqs. (7)
using the stationary phase approximation. Then we
find that the resulting behavior of nex and ǫex exhibits
a “cusp” at a critical driving velocity ωc determined by
ωc = 1 − h. This is illustrated in Fig. 2. Because this
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Figure 2: A plot of the total density of excited quasi-particles
(red line) and the energy density of excitations (blue line) as
a function of the rotation frequency ω in the limit of many
rotations φf ≫ 1 and for vanishing magnetic field h = 0, with
different anisotropy g = 0.01, 0.1, 1.0, 10, showing a cusp at
the critical driving velocity ωc = 1, which can be interpreted
as a “dynamical quantum phase transition”.
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singularity is recovered via the stationary phase method
we expect it to be valid for a class of models with similar
Hamiltonians. This cusp and the associated “dynamical
quantum phase transition” is directly related to the
effect of geometric phase. To understand this let us
apply a unitary transform Ûk(t) = diag(e+iφ(t), e−iφ(t)),
to go into a rotating frame, where the geometric
phase is removed from the Hamiltonian. The resulting
Hamiltonian in the rotating frame reads Ĥk,rot =
[(h− cos pk) + ∂tφ] σ̂

z + g sin pk (sin 2φσ̂
x − cos 2φσ̂y),

where the spectrum takes the following form

ǫk,rot =
√

(h+ ω − cos pk)2 + g2 sin2 pk. From the

spectrum we see that the Hamiltonian in the rotated
frame has a quantum phase transition at h + ωc = 1.
This transition gives raise to the cusp in Fig. 2. We
note though that the emergence of the cusp is non-
trivial since by quenching rotation frequency we are
pumping finite energy density to the system. In the
equilibrium this model does not have any singularities
at finite temperature. Thus this singularity is a purely
non-equilibrium phenomenon. Further, Fig. 2 illustrates
nicely that for a small g the regime where nex and ǫex
saturate with ω is close to ωc. However for g > 1 the
dependence of the saturation point on g is approximated
numerically as ωsat(g, h = 0) = 51.7g0.54 + 21.8g1.35.

Another possibility to analyze the interplay of geomet-
ric and dynamical phases on excess energy and density
of excitations is to consider the following helical driv-
ing protocol: (h(t) = δ t, φ(t) = ω δ t), beginning in the
ground state at ti = 0 and stopping at tf = 2

δ
, i.e. cross-

ing a quantum critical point. Now δ plays the role of
driving velocity, both in h and, for ω 6= 0, in circular
directions and ω determines the helicity of the path. For
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Figure 3: Landau-Zener to Helix: The density of excited
quasi-particles is plotted as a function δ the driving veloc-
ity for different helicities ω = 0, 0.9, 3, 5, 7, 10, 12 (from down
to the top) with N = 300 spins and an anisotropy of g = 0.9.
For non zero ω we observe linear scaling regime with δ.

ω = 0 we realize the usual Landau-Zener protocol and

for ω > 0 we describe a helical path in the parameter
space. In Fig. 3 we present the density of excitations ob-
tained from an exact numerical integration of the time-
dependent Schrödinger equation. We recover (Fig. 3) for
ω = 0 (lowest curve) the scaling nex ∼

√
δ, as expected

by the Kibble-Zurek scaling argument [14, 15]. With in-
creasing ω the density of excitations makes a crossover
to a different linear scaling regime with δ. However, in
accord with our general discussion in the strict adiabatic
limit we always observe nex ∝

√
δ.

Conclusion.—In summary, we addressed how the
geometric phase influences quantum many-body non-
equilibrium dynamics. We showed that at intermediate
of fast driving regimes geometric phase strongly affects
transition probabilities between levels. We showed that a
dynamical quantum phase transition can emerge as a re-
sult of a competition between the geometric and dynam-
ical phases. This transition manifests itself in the “cusp”
in the driving velocity dependence of various observables
(like e.g. the density of excitation and the energy den-
sity) at finite energy. This allows us to probe quantum
criticalities “from a distance”, without actually crossing
them. Such a possibility should be attractive from an
experimental point of view since the system doesn’t need
to undergo a QPT. We also found that the geometric
phase modifies the scaling with the driving velocity as
compared to the LZ scaling. This can be related to ef-
fective topology-induced interaction between the defects.
This effect is stronger in the gap-less regions of the phase
diagram. We also note that our results rely only on the
geometry of the phase space and thus rather generic. We
expect that they extend to other protocols where one
applies a time-dependent unitary transformation to the
Hamiltonian or other transformation which involves non-
trivial geometric phase. In particular, similar considera-
tions apply to the Dicke model realized in Ref. [16]. This
and possible other generalizations of our results (e.g. for
open [17] or turbulent [18] systems) will be discussed in
a separate work.
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