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We present a model for disordered 3D fiber networks to study their linear and nonlinear elasticity.
In contrast to previous 2D models, these 3D networks with binary crosslinks are under-constrained
with respect to fiber stretching elasticity, suggesting that bending may dominate their response. We
find that such networks exhibit a bending-dominated elastic regime controlled by fiber length, as
well as a crossover to a stretch-dominated regime for long fibers. Finally, by extending the model to
the nonlinear regime, we show that these networks become intrinsically nonlinear with a vanishing
linear response regime in the limit of floppy or long filaments.
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Materials ranging from paper and textiles to the struc-
tural components of living cells and tissues[1] consist of
networks of fibers or stiff polymers. Such networks have
extraordinary mechanical properties[2–4]. Their elastic-
ity depends in part on their connectivity[5, 6], in analogy
with jammed matter[7, 8] and random network glasses[9].
The mechanics of the constituent fibers, and specifically
their bending rigidity can also strongly impact network
elasticity[10]. However, the relative importance of fiber
stretching versus bending is not understood, especially in
3D. Prior work has mostly focused on 2D networks[11–
16] since simulations in 3D are challenging and have usu-
ally been limited to small system size[17, 18]. Signifi-
cant qualitative differences are expected between 2D and
3D networks: for the typical case of binary fiber inter-
actions, the high molecular weight limit in 2D actually
corresponds to the Maxwell central-force (CF) isostatic
threshold, where stretching interactions begin to com-
pletely constrain network deformations. In contrast, 3D
networks with binary interactions remain well below CF
isostaticity. Thus, owing to their marginal stability, real
3D fiber networks are expected to be fundamentally more
bending-dominated and more prone to collective nonaffine
deformations[10, 18]; even the existence of a simple affine
limit dominated by fiber stretching is unknown.

Here we develop a numerical model for the elasticity of
random 3D fiber networks with binary crosslinks. This
model provides access to network configurations ranging
from the rigidity percolation threshold to the previously
inaccessible high molecular weight limit. These networks
exhibit various qualitatively distinct elastic regimes: a
critical regime governed by the rigidity percolation point,
a length-controlled bending regime and an affine stretch-
ing regime, as shown in Fig. 1a. We provide a scaling
analysis for insight into the origins of these regimes. Para-
doxically, although these networks in 3D can only be rigid
with non-zero fiber bending stiffness, we find that no mat-
ter how weak this bending rigidity is, network elasticity
approaches an affine limit that is insensitive to fiber bend-
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FIG. 1: (Color online) Schematic phase diagrams for the linear
(a) and nonlinear elasticity (b) of 3D fiber networks on the
Phantom FCC lattice, where L is the average filament length,
z is network connectivity, γ is strain and κ is the fiber bending
rigidity. All lengths are measured in units of the lattice spacing
`0 and κ in units of µ`20. Solid boundary lines indicate a sharp
phase transition and dashed lines indicate a crossover.

ing for high molecular weight. Moreover, in the limit of
floppy filaments with weak bending rigidity or high molec-
ular weight, these networks become intrinsically nonlinear
with a vanishing linear response regime (Fig. 1b).

Much has been learned about stiff polymer gels from
minimal models, such as 2D Mikado networks of ran-
domly placed straight filaments with binary crosslinks[11,
12]. The elasticity of such Mikado networks is gov-
erned by nonaffine fiber bending (NAB) deformations
at low densities, while higher density networks exhibit
predominantly affine stretching (AS) elasticity of sin-
gle fiber segments [11, 12]. The crossover from NAB
to AS regimes can be understood as being the result
of increasing fiber-length, measured in units of the dis-
tance between crosslinks. However, for such 2D net-
works, this high molecular weight limit actually coin-
cides with Maxwell’s CF isostatic connectivity, zCF = 2d
in d dimensions[5], which can also give rise to a bend-
stretch transition[6, 13]; it is thus unclear whether the
observed transition in 2D is controlled by CF stretching
constraints or by filament length. However, 3D networks
with binary crosslinks—characteristic of most biopolymer
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FIG. 2: (Color online) a) The Shear modulus as a function of L
in units of `0 for various κ in units of µ`20. Here, GA represents
the affine shear modulus of the undiluted Ph-FCC lattice. The
inset illustrates the phantom principle: At each lattice vertex
3 independent binary crosslinks are formed between randomly
chosen fiber pairs labeled by color. b) Non-affinity parameter
Γ as a function of L. Dashed black lines indicate a slope of 2.

systems—are qualitatively different; in this case the high
molecular weight limit corresponds to network connec-
tivities well below zCF. In the absence of fiber bend-
ing resistance, such networks do not resist shear stresses.
Thus, there are reasons to question the existence of an
affine, stretching-dominated regime in realistic 3D net-
works with fibers that are more compliant to bending
than to stretching[13, 18, 19]. This is still subject of de-
bate since studies in 3D have so far been limited to small
systems[18] or to networks with high connectivities[6, 19].

To provide insight into the macroscopic mechanics for
network configurations ranging from the rigidity perco-
lation point to the high molecular weight limit, we de-
velop a 3D lattice-based fiber network model with bi-
nary crosslinks. Our networks consist of straight fibers
organized geometrically on a face centered cubic (FCC)
lattice. However, we limit the maximum coordination
number to four by randomly assigning three independent
pairs of crosslinked fibers out of the six fibers crossing
at a vertex. Although the different binary crosslinks
may overlap geometrically, they do not constrain each
other[20] (inset Fig. 2a). Therefore, we term this the
Phantom FCC (Ph-FCC) lattice. This model is simi-
lar to a generalized Kagome lattice in 3D[21], although
the Ph-FCC has a higher symmetry. By cutting bonds
with a probability 1 − p, we tune the average molecular
weight, L = `0/(1− p), where `0 is the distance between
vertices[6, 20].

The elastic energy of the 3D Ph-FCC network involves
stretching and bending contributions of the constituent
fibers, characterized by their stretching modulus µ and
bending rigidity κ. Each lattice vertex consists of 3 in-
dependent freely-hinging binary crosslinks ranked by h.

For small displacements, denoted by uhi , the stretching
energy of the network is expressed as

ES =
1

2

µ

`0

3∑
h=1

∑
〈ij〉

ghij
(
uhij · r̂ij

)2
, (1)

where the second sum extends over neighboring pairs of
vertices, uhij = uhj − uhi and r̂ij is the bond direction in
the undeformed lattice. Bond-dilution is implemented by
setting ghij = 1 for present bonds and ghij = 0 for removed
bonds. Fibers form straight chains that resist angular
deflections, leading to a total bending energy[6, 15],

EB =
1

2

κ

`30

3∑
h=1

∑
〈ijk〉

ghijg
h
jk

[(
uhij − uhjk

)
× r̂ij

]2
. (2)

Since the crosslinks themselves do not contribute a tor-
sional stiffness, the second sum only extends over coaxial
nearest neighbor triplets along the same fiber.

The shear modulus, G, is determined numerically by
applying a shear strain along the 111-plane with Lees-
Edwards periodic boundary conditions and energy min-
imizations are performed by a conjugate gradient algo-
rithm. Our network sizes range from W 3 = 203 to 1503

unit cells, with up to three times that many crosslinks.
Filaments that span the network make unphysical stretch
contributions to the elasticity of the sample and may ren-
der the deformation field of the network more affine. To
avoid such trivial finite size effects, at least one bond is
removed along every fiber. Consequently, this model can
only approach z = 4 asymptotically from below.

Linear regime—We find numerically that these net-
works have a finite shear rigidity only if κ > 0, even
though the perfect, undiluted Ph-FCC lattice (z = 4)
deforms affinely and has a finite shear modulus for κ = 0.

For finite κ, the Ph-FCC networks can be either bend-
ing dominated (G ∼ κ at low κ), or stretching domi-
nated (G ∼ µ at high κ or large L), as shown in Fig. 2a.
Interestingly, there appear to be two distinct regimes
well above the rigidity percolation point: a bending-
dominated regime where G depends on L and κ (low κ
and L) and an L- and κ-independent stretching domi-
nated regime (high κ and L).

These results can be understood as follows. In the high-
κ limit, the network deforms increasingly affinely, with a
shear modulus G ' GA. Here, GA ∼ µ

`20
z is the affine

shear modulus, which is completely determined by fiber
stretching. However, in the critical regime—controlled
by the bending rigidity percolation point zb—G vanishes
continuously with ∆z = z − zb[6, 9, 12, 21] as

Gcs ∼
µ

`20
|∆z|f , Gcb ∼

κ

`40
|∆z|f , (3)

for high and low κ, respectively. We find zb ≈ 2.4 and
f ≈ 0.65 for a system size W 3 = 303, as demonstrated
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in the lower inset in Fig. 3 by showing that G|∆z|−f/κ
reaches a plateau for low values of ∆z. The rigidity
threshold is similar to observations in prior 3D models[18],
although f is considerably lower here, which is more
consistent with findings on the generalized 3D Kagome
lattice[21]. The rigidity threshold can be estimated by a
counting argument[5, 6, 18]; this connectivity-threshold
occurs when per crosslink the number of stretching con-
straints, nbz/4, and bending constraints, nb(d− 1)z2/16,
equal the number of internal degrees of freedom d. Here,
the number of bonds per crosslink nb = 2 in the undi-
luted network (z = 4). This yields zb ≈ 2.6, in reasonable
agreement with the numerical results.

Since the CF isostatic point lies beyond the physical
connectivity range of this model, a naive expectation may
be that a nonaffine bending regime extends over the whole
range z < 4 for low κ, such that G � GA as z → 4 from
below. However, this argument ignores possible effects
due to filament length. In networks of straight fibers with
binary interactions, the average fiber length diverges as
z → 4 and large L may lead to nonaffine displacements
over greater length scales[13]. The effects of high L on
the deformation field have been discussed in the context of
2D Mikado networks using both scaling arguments[11, 12]
and floppy mode theory[13], although the corresponding
effects in 3D are unknown.

Here, we investigate the effects of molecular weight on
the deformation field and their implications for the me-
chanics of 3D fiber networks. Network nodes along a fiber
can undergo independent nonaffine deformations scaling
as γL to avoid stretching of the other fibers to which they
are connected. This direct scaling of nonaffine displace-
ments with L was proposed in Ref. [13] and constitutes
one of the central assumptions of the floppy mode model
that was applied to Mikado networks. To test this as-
sumption, we investigate the strain fluctuations using the
nonaffinity measure[6, 11, 22], Γ = 1

`20γ
2

〈
(δuNA)2

〉
, where

δuNA = u − uA denotes the nonaffine displacement of a
crosslink and the brackets represent a network average.
This nonaffinity measure exhibits a cusp at the bend-
ing rigidity percolation point, reflecting the criticality of
the network’s mechanics in this regime[6, 7], as shown in
Fig. 2b. Furthermore, there appears to be a regime for
sufficiently low κ where Γ ∼ L2 independent of κ, lending
credence to the basic assumption that δuNA ∼ Lγ[13].

Such length-controlled nonaffine deformations store an
amount of elastic energy scaling as κ(δuNA/`20)2`0 per seg-
ment, which on the macroscopic level results in a shear
modulus for this bending regime,

GLC ∼
κ

`20

(
δuNA

`20

)2
1

γ2
∼ κ

`60
L2. (4)

This prediction for the L-dependence of G is born out by
the numerical data, as shown in Fig. 2a. This analysis
further implies that the energetic cost of non-affine bend-
ing deformations grows with increasing L. As a result,
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FIG. 3: (Color online) The shear modulus scaled with the
affine modulus GA versus L scaled with λNA = `20/`b for vari-
ous values of κ in units of µ`20. The open symbols indicate data
ranges in the rigidity percolation regime where we observe dif-
ferent scaling. The lower inset shows G scaled with |∆z|f as a
function of |∆z| and here the open circles correspond to κ = 1.
The upper inset shows the nonaffine fluctuations Γ scaled with
Γλ = λNA /`

2
0 versus L/λNA .

such nonaffine bending deformations become less favor-
able than the L-independent affine stretching deforma-
tions when the average molecular weight exceeds a non-
affinity lengthscale, λNA . This crossover lengthscale can
be estimated by comparing GLC with the affine stretching
shear modulus GA, which forms an upper bound to the
shear modulus; this gives

λNA = `20/`b, (5)

where `b =
√
κ/µ. Indeed, by plotting G/GA as a

function of L/λNA we find a collapse of the data to a
universal curve, for which G/GA ' when L/λNA

>∼ 1,
as shown in Fig. 3. This supports the existence of a
NAB-AS transition driven by molecular weight in 3D
fiber networks with connectivities well below Maxwell’s
CF isostatic point. In contrast, prior results for 2D net-
works suggested λNA ∼ `−αb , with α ≈ 0.3 − 0.4[11, 12].
However, for such networks it is unclear whether the
NAB-AS transition is actually driven by fiber length, as
for the 3D case presented here, or by the CF isostatic
point[6, 13] that coincides with the high-L limit for the
Mikado model. A similar scaling analysis can be per-
formed for the nonaffine fluctuations (Fig. 2.b). At the
crossover Γ = Γλ = λ2NA /`

2
0 = `20/`

2
b and thus, we can

collapse the nonaffinity data above the critical regime by
plotting Γ/Γλ as a function of L/λNA , as shown in the
upper inset of Fig. 3. This shows that Γ/Γλ reaches a
maximum at the NAB-AS cross-over followed by a grad-
ual decrease with L/λNA . We summarize the conclusions
for the various elastic regimes based on this scaling anal-
ysis and the raw data (Fig. 2)) in Fig. 1a, in which the
crossovers are indicated by dashed lines.

Nonlinear regime—The length-controlled bending me-
chanics also has important implications for the nonlin-
ear elasticity of 3D fiber networks. Even in a bending
dominated regime, stretching modes are excited at finite
network deformations[14], but to a higher order in the
applied strain[7, 10, 13]. Specifically, assuming length-
controlled nonaffine deformations, a transverse bend with
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FIG. 4: a) The differential modulus K = dσ/dγ scaled by the
affine modulus GA, together with γ0 and γA for networks with
L = 18.3. b) Characteristic strain for the onset of nonlinear
behavior. The inset shows the collapse according to the scaling
prediction in Eqn. (6). L is measured in units of `0 and κ in
units of µ`20.

an amplitude ∼ γL results in a stretch energy in the as-
sociated bond, δES ∼ µε2`0, where ε ∼ (γL/`0)2+O(γ4).
The onset of nonlinear network elasticity occurs at a
strain γ0, at which δES becomes comparable to the bend-
ing contribution, δEB ∼ κL2γ2/`3c . This stiffening satu-
rates at a strain γA, set by the condition δEB + δES ∼
µ
`20
γ2, at which the network’s response becomes dominated

by affine stretching modes. Thus, the onset and comple-
tion of the stiffening regime are expected to scale as

γ0 ∼
`b
L
, and γA ∼

`20
L2

√
1− L2`2b/`

4
0. (6)

Here we focus on the characteristic strain for the onset
of nonlinear behavior, γ0, which is shown in Fig. 4b. To
test the scaling prediction, we collapse the data by plot-
ting (`bL)2 as a function of the scaled characteristic strain
γ0L

2 (inset Fig. 4). Importantly, these results provide ev-
idence for a vanishing linear response regime in the limits
κ → 0 and L → ∞. The scaling of the nonlinear behav-
ior of the network is illustrated in the schematic phase
diagram in Fig. 1b.

Using the phantom model together with a scaling anal-
ysis, we have shown that even though the mechanical sta-
bility of 3D networks relies on the bending resistance of
the constituent fibers, surprisingly for any κ > 0, network
mechanics becomes affine and independent of κ when
L > λNA . We conjecture that main results of this Letter
also apply to models with additional interactions other
than fiber bending, which stabilize the network below
the CF-threshold, including next-nearest neighbor inter-
actions or bond-bending interactions for crosslinks that
fix a preferred bond-angle. Specifically, such networks
should exhibit an affine high molecular weight limit and
a vanishing linear elastic regime in the limit of long fila-
ments or weak interactions[7].

The scaling analysis presented here for athermal fiber
networks may also be used to develop predictions for ther-

mal systems for which the crosslinking lengthscale is ex-
pected to scale with ρ−2/5[23], where ρ is the polymer
length-density. In the bending regime, we expect G ∼
κρ13/5 for thermal semiflexible polymers and G ∼ κρ3 for
stiff fibers. These predictions may account for a recent
report of G ∼ ρ2.68 in collagen networks[17].

The Phantom FCC model developed here, provides a
powerful numerical model to probe the mechanics of 3D
fiber networks with large system sizes. This model can
also be extended to study the dynamic network rheology
and the effects of force generating molecular motors.
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