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Abstract

We demonstrate a new, nonlinear optical effect of electric currents. First, a steady current is

generated by applying a voltage on a doped GaAs crystal. We demonstrate that this current

induces second-harmonic generation of a probe laser pulse. Second, we optically inject a transient

current in an undoped GaAs crystal by using a pair of ultrafast laser pulses, and demonstrate that

it induces the same second-harmonic generation. In both cases, the induced second-order nonlinear

susceptibility is proportional to the current density. This effect can be used for nondestructive,

noninvasive, and ultrafast imaging of currents. These advantages are illustrated by the real-time

observations of a coherent plasma oscillation and spatial resolution of current distribution in a

device. This new effect also provides a mechanism for electrical control of the optical response of

materials.
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Interaction between matter and electromagnetic field is usually described in the coordi-

nate gauge with the electric field strength and the polarization of the matter. One important

example of this interaction in the nonlinear regime is the well-known electric-field-induced

second-harmonic generation (SHG) effect,[1] in which a low frequency electric field breaks

the inversion symmetry and, in the presence of an optical field with frequency ω, engen-

ders output of a second harmonic (SH) at frequency 2ω. Field-induced SHG has significant

practical applications in visualizing electric fields.[2–6] Another example of SHG induced

by symmetry breaking was recently demonstrated by some of us,[7] following a theoretical

prediction,[8] where a pure spin current, i.e. a net flow of angular momenta of electrons,

induces SHG.

In metals and semiconductors, the electron states are extended rather than localized. A

better approach to the matter-field interaction is to use the momentum gauge with fields

described by the vector potentials and the matter response by the electric currents. There is

a correspondence between nonlinear phenomena in the two gauges. For instance, long-known

third-order wave mixing effects in the coordinate gauge [9] have a more recently discovered

analog in the momentum gauge – coherent current injection.[10, 11] Hence, it is reasonable

to anticipate the existence of the field-induced SHG analog in which the symmetry is broken

by the current rather than by the field. This phenomenon, current-induced SHG, was first

predicted by one of us.[12] In this work, we provide conclusive experimental evidence of

the current-induced SHG, and measure its strength and find it close to our theoretical

estimation. We demonstrate its practical use by time-resolving a plasma oscillation and

spatially resolving a steady current in GaAs samples.

We fabricate a metal-semiconductor-metal device by depositing a pair of Au electrodes

on a GaAs wafer of 0.5-mm thick, as shown schematically in the inset of Fig. 1A. The

electrodes are separated by a distance of about 14 µm and are approximately 1 by 2 mm

in size. The wafer is n-type doped with a concentration of 1018/cm3, grown along [100]

direction. Its room-temperature resistivity ρ = 2.3×10−5 Ohm·m. Hence, a 5-V voltage

across the electrodes drives a direct current of the density J ≈ 106 A/cm2.

In order to observe the SHG induced by this current, we use a 0.5-nJ, 170-fs, and 1800-nm

probe pulse that is linearly polarized along the current direction. It is focused to a spot

size of approximately 4 µm (full width at half maximum) at the same side as the electrodes

by using a microscope objective lens. The transmitted SH of the probe pulse at 900 nm
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is collected by another objective lens, and is detected by a silicon photodiode. For lock-in

detection, we modulate the current on and off by modulating the voltage applied with a

square wave. In order to avoid any attenuation of the current caused by the response of the

device, we use a small modulation frequency of 10 Hz. The sample is at room temperature.

In addition to the current, the sample itself also causes SHG, with a power of about

100 nW, much larger than the expected power of the current-induced SH. By comparing the

surface and bulk SHG by focusing on the surface and inside, we verify that the surface con-

tribution dominates. In our experiment, such a background is utilized as the local oscillator

of the homodyne detection.[13] The total SH power is a result of the interference of these

two SH fields. By modulating the current density, we can directly detect ∆P , the change of

the total SH power caused by the current.

We start by changing the voltage applied (and therefore the current density) and mea-

suring the ∆P at the center of the gap between the two electrodes. Figure 1A shows that

∆P is proportional to J . This is consistent with the theoretical prediction that the current

induced second-order susceptibility, χ
(2)
J , is proportional to J .[12] Furthermore, although not

shown in the figure, ∆P flips signs when the direction of the current is reversed, but retains

the same amplitude.

Next, we measure ∆P at various positions throughout the device by scanning the laser

spot. The result is shown in Fig. 1B. Large signals are observed in the gap between the

two electrodes (the greenish strip). Figure 1C shows the same ∆P measured closer to the

bottom edge of the device, and with a smaller step size. Although the geometry of this

device is simple, these measurements demonstrate that the current-induced SHG can be

used to obtain a real space image of current density. As such, it can be used to determine

the spatial distribution of current density in a much more complex device.

In this configuration, the current is generated by the applied electric field, which is

known to induce SHG.[1–6] However, in such a highly conductive sample, the field effect

is expected to be small. We confirm this by a simple order-of-magnitude estimate: Our

theory (Ref. 12, see also Eq. 3 and related discussions) gives the relation between nonlinear

susceptibility and current density as χ
(2)
J /J ∼ 2 × 10−22 m3/W under the experimental

conditions. The electric field equivalent is χ
(2)
E /J = χ(3)(2ω; 0, ω, ω)ρ, where χ

(2)
E is the field-

induced nonlinear susceptibility. The maximum plausible value of the proper third-order

susceptibility χ(3)(2ω; 0, ω, ω) ∼ 2.5 × 10−19 m2/V2, obtained by using Miller’s rule[14] and
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FIG. 1. SHG induced by an electrically generated steady current. A: The SH signal as a function

of current density. The inset shows schematically the device geometry. B: Image of SH signal

measured by scanning the probe laser spot across the device. C: Same as B, but close to the

bottom edge of the electrodes.

experimental data from Ref. 15. Hence, χ
(2)
E /J < 0.5× 10−23 m3/W.

Although the field contribution is more than one order of magnitude smaller than the

current contribution, an unambiguous demonstration of the current-induced SHG can only

be achieved by using a current that is not constraint by Ohm’s law, i.e. a current not driven

by an applied field. It is possible to generate such a current by a well-know coherent current

injection process, utilizing quantum interference between multiple transition pathways. In

this process (Fig. 2A), a single photon of SH with frequency 2ω causes transition of electrons

from the valence to the conduction band. The simultaneously present two-photon transition

creates electron-hole pairs too, but the most intriguing phenomenon is the interference of the

two transitions that depends on the relative phase of the two fields. When they are π/2 out

of phase, the interference term is positive for +k and negative for −k. Hence more electron-

hole pairs are created that move to the right as opposed to those moving to the left. The

resulting non-equilibrium carrier distribution function fk is different from the symmetric

equilibrium function f 0
k
, as shown in Fig. 2A. Using Fermi’s golden rule and performing

summation over the momenta of nonequilibrium carriers, one obtains the current-injection
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FIG. 2. A: diagrammatic representation of the sequence of events in coherent current injection. 1:

single photon band-to-band transition caused by the SH photon; 2 and 3: two-photon transition

caused by two fundamental photons with transition matrix elements incorporating the electron

momentum; 4: interference of the two above processes results in difference of electron-hole pair

generation at +k and −k causing current injection. B: diagrammatic representation of the sequence

of events in current-induced SHG. 1: a DC current is the result of an asymmetric distribution of

carriers in k-space; 2 and 3: virtual two-photon transition caused by two fundamental photons with

transition matrix elements incorporating the electron momentum and detuning from resonance by

∆Ek; 4: Polarization at two-photon frequency causes emission of a SH photon.
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where ρcv is the joint density of states and the dipole matrix element of the transition is

defined as dcv = ePcv/m0ω where Pcv is the interband matrix element defined by Kane.[16]

To inject such a current, electrons in a 400-nm thick GaAs crystal, grown along [100], are

excited from the valence band to the conduction band by one-photon absorption of a 290-fs,

750-nm pulse and two-photon absorption of a 75-fs, 1500-nm pulse. Both pulses are incident

normal to the sample and are tightly focused to 2 - 3 µm at the sample surface by using

a microscope objective lens. With both pulses being linearly polarized along an arbitrarily

chosen x̂ direction, electrons are excited to the conduction band with an average velocity
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v0sin(∆φ)x̂, where ∆φ is the relative phase of the two transition amplitudes, and v0 is on

the order of 30 nm/ps.[11, 17–21] With a carrier density on the order of 1017 − 1018/cm3,

J ∼ 105A/cm2. Since there is no driving force, the current is transient. In order to extend

the lifetime of this current, the sample is cooled to 10 K.

The SHG induced by the optically injected current is observed by using an x̂-polarized,

0.1 nJ, 170-fs, and 1760-nm probe pulse that is focused to a spot size of 2.1 µm from the

backside of the sample. The SH of the probe pulse at 880 nm is collected by the pump-

focusing lens, and is sent to the silicon photodiode. Similar to the DC measurement, the

current-induced SH is amplified by the surface SH of 4 nW. A combination of bandpass

and color filters is used in front of the photodiode in order to block the unwanted beams,

including the pumps, the probe, and the photoluminescence of the sample. In addition, the

photodiode is not sensitive to the strong probe at 1760 nm and the strong pump at 1500

nm.

Figure 3A shows the detected ∆P as we vary ∆φ and the time delay between the current-

injecting pulses and the probe pulse. At each probe delay, ∆P ∝ sin(∆φ), as shown in

Fig. 3B. Since J ∝ sin(∆φ), we confirm that χ
(2)
J ∝ J , which is consistent with Fig. 1A. By

rotating a polarizer in front of the detector, we find that the SH is linearly polarized along x̂

direction. Furthermore, we verify that with a ŷ-polarized probe pulse (i.e., perpendicular to

the current), the ∆P is reduced by at least one order of magnitude. Hence, the SHG effect

can be used to measure both the magnitude and the direction of the current density.

Figure 3A also shows that with a certain value of ∆φ, ∆P oscillates in time, as ex-

pected from a plasma oscillation: The electrons and holes are injected with opposite crystal

momenta. Once they separate, a strongly nonuniform space charge field develops, which

decelerates the carriers and causes the current density to drop. After the carriers reach their

maximum displacements, with the current density dropping to zero, they are driven back

towards the origin by the space charge field, giving rise to a negative current. As shown

in Fig. 3A, such a plasma oscillation is strongly damped, due to scattering and the field

inhomogeneity.[22] Furthermore, with different ∆φ, and hence different injected average ve-

locity, the magnitude, but not the frequency, of the oscillation changes. This is consistent

with the fact that the amplitude of the oscillation is determined by the initial velocity, but

the frequency is independent of it.

To further investigate the plasma oscillation, we set ∆φ = π/2 and measure ∆P as
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FIG. 3. SHG induced by an optically generated transient current. A: the measured ∆P as a

function of the probe delay and ∆φ, when the probe spot overlaps with the current-injecting spots

(defined as x = 0). The peak carrier density is 7.2 × 1017/cm3. B: two cross sections of Panel

A with fixed probe delays of -0.02 and 0.15 ps, respectively, as indicated by the vertical lines in

Panel A. C: ∆P as a function of time for several carrier densities of 7.2 (squares), 6.0 (circles), 4.8

(up-triangles), 3.6 (down-triangles), 2.4 (diamonds), and 1.2 ×1017/cm3 (hexagons), respectively,

measured with ∆φ = π/2. D: the period (left axis) and the frequency (right axis) of the oscillations.

The solid line indicates the
√
N2D dependence of the frequency.

a function of the probe delay with various peak carrier densities by varying the pump

fluence, as shown in Fig. 3C. Clearly, both the magnitude and the frequency of the oscillation

increase with the carrier density. Figure. 3D shows the periods and the frequencies of the

oscillation. The periods are deduced by using the time difference between the first and

the second zero-crossing points for each curve. Due to the large uncertainties of the data,

we do not attempt to accurately analyze the dependence of the frequency on the carrier

density. However, we found that the data is consistent with
√
N2D dependence expected

for a two-dimensional plasma oscillation,[22] as indicated by the solid line. Here N2D is

the areal carrier density. We note that although current injection by the coherent control

technique has been demonstrated in many materials by steady-state electric measurement,

terahertz detection, and spatially resolved pump-probe techniques,[11, 19, 20, 23–25] the
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current-induced SHG demonstrated here allows us to time-resolve the ultrafast dynamics of

these currents.

Although the coherently injected current in our experiment is accompanied by a space

charge field, we can safely rule out the latter as the cause of SHG: The space charge field

is proportional to the charge separation, and hence is delayed with respect to J by approx-

imately a quarter period. Such a lag has been confirmed in our previous high-resolution

pump-probe experiments, where the charge separation was found to reach a peak after more

than 100 fs.[26, 27] However, here we observe the peak SHG around zero probe delay. Hence,

the all-optical time-resolved technique has the advantage to unambiguously distinguish the

field-induced and the current-induced SHG effects. The observed ultrafast dynamics also

ensure that the observed signal is not merely a modification of the surface SHG by the

photoexcited carriers, which would have persisted for the lifetime of the carriers of about

100 ps, and would have not shown the oscillatory features.

It is interesting to note that the current-induced SHG demonstrated above is in fact

closely related to the coherent current injection process (Fig. 2A) used to inject the transient

current. To illustrate this relation, we show the current-induced SHG process in Fig. 2B.

Here the nonequilibrium carriers are injected first and the carrier distribution is shifted along

the kx direction, with the current density J =
∑

c,v,k

−eh̄kx(fk − f 0
k
)/mc,v. When the energy

2h̄ω is less than the bandgap, the two photon virtual upward transition is followed by a

downward transition accompanied by the emission of SH photon whose rate is proportional

to J . Normally, this SHG would not be observed since the contributions from the states

with opposite k cancel each other. But in the presence of the current the cancelation is not

complete as there are more carriers that block this process that have −k as opposed to +k,

leading to the SH polarization

P∗

2ω = − 1

2V

∑

k

∣

∣

∣

∣

ePk,x

m0ω

∣

∣

∣

∣

2
eh̄kx

2µωh̄ω∆Ek

(fk − f 0
k
)E2

ω. (2)

One can see the unmistakable resemblance between Eqs. 1 and 2. Once summation is

performed one obtains the expression for the current-induced second-order susceptibility

χ
(2)
J = P∗

2ω/ε0E2
ω =

d2cv
20ε0h̄ω2∆Ek

J. (3)

The major difference between Eqs. 3 and 1 is that Eq. 1 describes the real process of coherent

current injection with the real transition between two bands taking place – hence the presence
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of the density of states – while the current-induced SHG process is virtual and in place of

density of states, ∆Ek – detuning averaged over all the current-carrying states contributing

to the SHG – enters the expression, resulting in the Kramers-Kronig-like relation between

the two processes.

To estimate from the measured ∆P the size of the nonlinearity induced by the tran-

sient current, we assume a perfect phase matching in the SHG, and solve coupled-wave

equations.[14] Such a simplification is justified since the sample thickness is smaller than

the coherence length. We estimate the magnitude of χ
(2)
J to be on the order of 0.05 pm/V

with J = 105A/cm2. To compare with our theory, we use Eq. 3. For the experimental

conditions with dcv evaluated using the value 2P 2
cv/m0 = 28 eV for GaAs and the average

detuning taken to be ∆Ek ≈ 0.2 eV under the assumption of injected electrons keeping their

kinetic energy, we obtain the value of χ
(2)
J /J = 7× 10−23 m3/W. Hence, the current of 105

A/cm2 is expected to induce the χ
(2)
J of about 0.07 pm/V, which agrees very well with the

experimental result.

In summary, we have demonstrated a second-order nonlinear optical effect induced by

electric currents. In contrast to the recently demonstrated pure spin current-induced SHG,[7,

8] which only offers the measure of chirality of the medium, the effect demonstrated here

detects electric currents, which are used in vast majority of electronic applications. The pure

spin current-induced SHG relies on the existence of at least two valence bands that are split

by spin-orbital interactions, while the electric current-induced SHG should exist in any type

of semiconductors. Since it is an effect of the symmetry breaking at the macroscopic scale,

not related to the unit cell symmetry of the crystal, it should also be observable in amorphous

materials and polymers. Hence, this new member of the externally induced nonlinear optical

effects, in addition to the field-induced SHG[1] and the pure spin current-induced SHG,[7, 8]

can be used for direct optical detection of electric currents in a wide range of materials.

Since femtosecond lasers are widely available, this ultrafast current-detection technique can

be applied in many research fields to study ultrafast charge transport, as illustrated by the

time resolution of the ultrafast plasma oscillation. Also, this technique can be used for a

real-space image of current density, which may have applications in semiconductor industry,

where such a map of the current density is required.
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