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Using inelastic neutron scattering technique, we measured the spin wave dispersion over the 
entire Brillouin zone of room temperature multiferroic BiFeO3 single crystals with magnetic 
excitations extending to as high as 72.5 meV. The full spin waves can be explained by a 
simple Heisenberg Hamiltonian with a nearest neighbor exchange interaction (J=4.38 meV), 
a next nearest neighbor exchange interaction (J’=0.15 meV), and a Dzyaloshinskii-Moriya-
like term (D=0.107 meV). This simple Hamiltonian determined, for the first time, for BiFeO3 
provides a fundamental ingredient for understanding of the novel magnetic properties of 
BiFeO3. 
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Recent discoveries of the so-called multiferroic materials, where the magnetic order and 
ferroelectric polarization coexist, have led to a surge of interest in this rather unusual class of 
materials [1]. Intense research activities on these systems are partly motivated by pure 
intellectual desire to understand a number of the following fundamental questions: why and 
how the two seemingly disparate ground states can find a particular set of compounds 
hospitable more than the others. The immense potential for future applications as well as the 
quest for fundamental principles has made these multiferroic compounds to be one of the 
most sought-after recent topics in material science [2, 3]. 
 
Of all multiferroic compounds, BiFeO3 is arguably one of the most interesting systems with 
both ferroelectric and magnetic transitions above room temperature: with a Neel temperature 
at TN=650 K and a ferroelectric transition temperature at TC=1100 K [4, 5], exhibiting one of 
the largest polarization values, ~ 100 μC/m2 [6]. Another interesting point to be made is that 
when it undergoes an antiferromagnetic ordering at 650 K, an incommensurate structure is 
formed with an extremely long period of 620 Å [5]. We have recently reported how this 
incommensurate magnetic structure can be linked to the electric polarisation through a lattice 
anomaly at TN [7] with an estimated relative volume change of 0.4% at low temperatures like 
multiferroic hexagonal manganites [8]. For the benefit of discussion later on, we note that the 
FeO6 octahedron is distorted in such a way that Fe-O bonds are split into two groups at 5 K: 
1.948 and 2.109 Å. Probably because of this splitting, there are two types of super-exchange 
interactions: one is a nearest neighbour exchange interaction (J) along the Fe-O-Fe bond and 
the other is a next nearest neighbour exchange interaction (J’) along the Fe-O-O-Fe bond. 
 
In the hexagonal notation, the propagation vector of the incommensurate structure is 
Qm=[0.0045 0.0045 0] at room temperature with a chiral vector of e3=[1 -1 0] [5]. Although a 
pseudo cubic notation has been used in some literatures, here we use the hexagonal notation 
since it better reveals some symmetry of the spin waves as we discuss later (see Fig. 1a & 1c). 
Interestingly, this incommensurate phase disappears and becomes a simple G-type 
antiferromagnetic structure when prepared in thin films, presumably because there is 
inevitably some residual strain induced due to lattice mismatch with the substrates [9]. There 
have since been numerous studies reporting various interesting surprises in both bulk and thin 
film forms of BiFeO3: an unusual photovoltaic effect [10], a light-induced large size-change 
[11], a strain control of magnetic domain [12], an electric field control of spin wave [13], and 
a control of magnetism by electric field [14], to name only a few.  
 
Despite the numerous reports of the unusual and highly interesting phenomena found in 
BiFeO3, understanding of the underlying microscopic spin Hamiltonian is not well 
established yet. Surely, knowing this microscopic magnetic interaction in its entirety ought to 
be a firm and proper starting point for deeper and fundamental discussions regarding the 
magnetic properties. A main reason for this absence of the inelastic neutron scattering data, 
and hence the lack of the full understanding of the spin waves is associated with several 
experimental and technical difficulties involved, in particular the fact that it is quite 
challenging to grow large single crystals of BiFeO3 [10]. 
 
In this Letter, we have addressed this fundamental problem of measuring and understanding 
the full spin waves of BiFeO3 by growing several high quality single crystals, which show a 
large dielectric polarization P of 86 μC/cm2 for bulk BiFeO3 with the measured P value being 
close to an expected theoretical value [10, 15]. Although these crystals are quite large with 
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mm-sized dimensions, each of them used alone was not big enough for traditional inelastic 
neutron scattering experiments. Thus we had to use an assembly of ten single crystals by 
meticulously co-aligning them all within 3° of one another for all three directions of the 
hexagonal symmetry with the total mass of 1.9 g at the single crystal neutron diffractometer, 
FCD of HANARO, Korea. The photo of the assembled samples of ten single crystals is given 
in Fig. 1b.  
 
Using these samples, we have carried out high resolution inelastic neutron scattering 
experiments with two time-of-flight spectrometers: one is AMATERAS at J-PARC, Japan and 
another MERLIN at ISIS, UK. All our experiments were done at 5 K. For technical reasons 
discussed below, data taken at AMATERAS are useful especially for the low energy part of 
the spin waves whilst the detailed features of the high energy part of the spin waves are 
clearer in the data taken at MERLIN. Since we used ten co-aligned crystals with a time-of-
flight technique (which has intrinsically relatively poor Q-resolutions), the incommensurate 
magnetic structure with such a small value of Qm=[0.0045 0.0045 0] can be safely 
approximated to a simple G-type antiferromagnet with the following lattice parameters: 
a=5.573 and c=13.842 Å as shown in Fig. 1a. Therefore we will use this G-type structure for 
our calculations of the spin waves until we include a Dzyaloshinskii-Moriya-like term. 
 
It is also worth mentioning some technical aspects of the experiments. We carried out the 
AMATERAS experiment with fixed geometries, i.e. incident neutron beam parallel to the [0 0 
1] (c*) or [1 2 0] (b*) axes with the incident energy of 94.154 meV. Thanks to the so-called 
repetition rate multiplication technique [16], we were also able to have additional data for 
several other incident energies such as 23.630 and 10.513 meV. In order to determine spin 
waves from the AMATERAS data, we had to search through the data to determine the energy 
of the spin waves at Q points concerned, which are covered by the experiment. 
 
In order to overcome this technical difficulty associated with the more traditional method of 
the time-of-flight technique, we performed the MERLIN experiment while rotating the 
samples from -90 to +80 degrees with the incident beam parallel to the [0 0 1] direction 
initially: the scattering plane is on the b*-c* plane. After the experiments, we combined all 
the 171 individual data files to make a single file containing the full four dimensional 
information of momentum (Q) and energy (E) of the spin waves. We chose the incident 
energy of 250 meV for the MERLIN experiment to make the detector coverage of the 
MERLIN spectrometer wide enough to cover the full Brillouin zone of the anticipated spin 
waves of BiFeO3, in particular the high energy parts whose detailed features are missing in 
our AMATERAS data. With this configuration and the sample rotation method, we were able 
to cover the full Brillouin zone of BiFeO3 and project the spin waves with an energy transfer 
higher than 30 meV for any directions of the Brillouin zone as we like. As it shall become 
clearer below, this vast amount of the data in the four-dimensional Q-E space is crucial for us 
to determine exchange interactions precisely. 
 
Although we can obtain the experimental spin waves for any directions of the Brillouin zone 
using the MERLIN data, we choose Q points of highest symmetry for presentation here as 
shown in Fig. 1c. For example, we plot the experimental spin waves for the Γ-M-K-Γ-A 
directions together with the theoretical results in Fig. 2. The upper contour plot in Fig. 2b is 
obtained from the combined data of the whole MERLIN experiment while data points 
denoted by circles are obtained by cutting judiciously the AMATERAS data through each of 
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the related Q-E points. There are two reasons why we do not think that what we measured is 
not due to phonons. First of all, according to theoretical phonon calculations [17], the 
experimental dispersion curves are too steep to be acoustic phonon. For example, the acoustic 
mode only goes up to ~ 10 meV, which is much lower than the top of the spin waves branch 
at 72.5 meV in our data. Second, the measured excitation becomes weaker when compared at 
equivalent Q points of different Brillouin zones: with increasing the Q values the intensity of 
the measured excitations gets reduced following the magnetic form factor. 
 
In order to analyze the data, we started with a minimal Heisenberg Hamiltonian only with 
nearest neighbor interaction (J). We then calculated our theoretical spin waves using a 
Holstein- Primakoff transformation. In this model Hamiltonian, the value of J is determined 
from the total width of the full dispersion. For example, we determined J, which is 4.08 meV, 
from the energy of the spin waves at the A point (see the insert in Fig. 2b). The dashed line in 
Figs. 2a & 2b represents the theoretical spin waves calculated using this minimal model 
Hamiltonian. Surprisingly, this simple Hamiltonian appears to explain most of the essential 
features observed in the experimental dispersion. However, upon close inspections, this 
simple model Hamiltonian fails to reproduce some of the detailed features of the 
experimental data. For example, as shown in Fig. 2b, there are clear discrepancies between 
the experimental data and the theoretical curves near the M point. 

 
To resolve the discrepancies, we extend the minimal model Hamiltonian by including another 
exchange interaction term (J’) for the next nearest neighbors (n.n.n.) in addition to a 
Dzyaloshinskii-Moriya-like term in the following Heisenberg Hamiltonian: H ൌ J ∑ .୨୬.୬܁·୧܁ ൅  J′∑ .୨୬.୬.୬܁·୧܁ െ ۲ · ∑ ሺ܁୧ ൈ ୧ାδ෠ሻ୧܁ , 
where the first and second sums run over the nearest neighbors (n.n.) and next nearest 
neighbors (n.n.n.), respectively for the magnetic unit cell of the G-type structure as shown in 
Fig. 1a. The third term (D) describes a Dzyaloshinskii-Moriya-like interaction with ݅ ൅  መߜ
representing the next nearest neighbor of site i along the [1 1 0] axis: D is parallel to the 
chiral vector e3=[1 -1 0]. We will discuss the effects of the Dzyaloshinskii-Moriya-like term 
on the spin wave later in the paper. Here we would like to point out one subtle point about our 
use of the Dzyaloshinskii-Moriya-like term. When we identify the antiferromagnetic vector in 
the Landau-Ginzburg theory of the local spin order parameter, we can show that the D term in 
our spin Hamiltonian is reduced to the same form of Lifshitz invariant in Ref. 18. So we 
should note that our D term is an effective Dzyaloshinskii-Moriya term. See also the magnetic 
unit cell of a simple G-type structure shown in Fig. 1a. In our calculations, we used a spin 
parameter S=5/2, an ionic value of Fe3+, with quantum corrections. 
 
Using this new Hamiltonian without the Dzyaloshinskii-Moriya-like term, i.e. D=0 meV, we 
can determine a value of J-2J’ by fitting the data at the A point: the energy of the spin waves 

at the A point is obtained algebraically as 6S෨ሺJ െ 2Jᇱሻ, where S෨ ൌ ටହଶ ቀହଶ ൅ 1ቁ. We then 

varied J and J’ values systematically in our calculations to fit the experimental data for all the 
other directions, while keeping the J-2J’ value at 4.08 meV. In particular, the energy at the M 
and K points can be expressed by the following expressions: 4S෨ඥ2ሾሺJ െ 2JԢሻଶ െ 2JԢሺJ െ 2JԢሻሿ 
at the M point and 3S෨ඥ3ሾሺJ െ 2JԢሻଶ െ JԢଶሿ at the K point, respectively. From the analysis of 
the data, we finally obtained the best fitting results with J=4.38 and J’=0.15 meV, respectively. 
Using this set of parameters, we succeeded in obtaining a better agreement between the 
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experimental data and the theoretical curve than before. For instance, this new theoretical 
curve (solid line) now explains the small deviations seen in the Q-E regions around the M 
points in the previous calculations with the nearest neighbor interaction alone (see Fig. 2b). 
Similar improvements can also be found around many other points of the Q-E space. In Fig. 3, 
we also display the data together with the theoretical curves for the L-M-L direction, where 
again we can see the improvement brought about by the inclusion of the additional term J’. In 
passing, although the inclusion of J’ in our calculation improves the fittings, surprisingly the 
minimal Hamiltonian with a single exchange interaction (J) is a very good approximation to 
the observed experimental data for most of the Q-E space. The origin of the antiferromagnetic 
next nearest interaction can be attributed to the large distortion of oxygen octahedron with 
respect to Fe ions occurring at the ferroelectric transition as we discussed before. 
 
We note that this spin Hamiltonian with two exchange interactions is also consistent with all 
the available bulk data. For example, our choice of J and J’ values produces a theoretical 
TN=620 K, which is not too far off from the experimental value of 650 K. Moreover, 
including the Dzyaloshinskii-Moriya-like term with a value of D=0.107 meV produces an 
angular deviation of 3.24° between neighboring spins along the [1 1 0] direction. This angular 
deviation corresponds to an incommensurate periodicity of 2π ቀJିସJ′ଶD ቁ a ؆ 620 Å, a being the 
a-axis lattice constant. We further performed an ensemble average by the Monte Carlo 
method by employing the standard Metropolis algorithm on the lattice of L[110]=110 and L[1-

10]=Lz=4 with the periodic boundary conditions. We prepared typical configurations at low 
temperatures for zero fields by means of a simulated annealing method. We then executed at 
least 105 Monte Carlo steps per spin and discarded typically 2×104 steps for equilibration. 
Near the transition, more care was taken to reach sufficient equilibration and ensemble 
average by increasing steps to 106. In our Monte-Carlo simulations, the incommensurate 
phase is found to be stable for the parameters space found by the inelastic neutron scattering. 
 
In our Monte-Carlo calculations, we also simulated various magnetic ground states by 
varying D values in order to investigate the stability of the incommensurate phase. For this, 
we included a new term for a single ion anisotropy, -K ∑ ሺS୧୸ሻଶ୧ . According to our results, the 
incommensurate ground state is found to be stable over a range of D values as long as K is 
smaller than a critical value of ~0.009 meV, for the experimentally determined J, J’, and D 
values. When the single ion anisotropy (K) becomes larger than the critical value of 0.009 
meV, the simple G-type becomes robust against the incommensurate magnetic structure. 
Therefore, the disappearance of the incommensurate magnetic phase in thin films can be 
explained in our model Hamiltonian by the single ion anisotropy value (K) being different 
from the bulk value via the strain due to lattice mismatches. Since the single ion anisotropy is 
intrinsically sensitive to local distortions, it is conceivable that Fe in thin films samples under 
enormous strain might experience different local symmetry from the more ideal broken 
symmetry of the bulk sample. 
 
Let us now discuss the effects of the Dzyaloshinskii-Moriya-like term (D=0.107 meV) on the 
spin waves. To study the spin waves in a spiral state, we introduced a rotated coordinate for 
each spin so that one of the principal axes is aligned with the classical spin direction. We then 
performed a Holstein-Primakoff transformation for the spin operators in this coordinate. The 
spin wave dispersion curve is plotted in Fig. 2a together with two other cases discussed 
before. As one can see in Fig. 2a (see the dotted lines in Fig. 2a), the new theoretical spin 
waves remain almost unchanged for most of the Q-E space when compared with the spin 
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waves (solid line) calculated for Hamiltonian with nearest (J) and next nearest (J’) neighbor 
interactions. Effects of the Dzyaloshinskii-Moriya-like term can only be visible at the very 
low energy part of the spin waves near the Γ point. As shown in the inserts of Fig. 2a, the 
inclusion of the Dzyaloshinskii-Moriya-like term in our calculations splits the low energy 
modes at the Γ point and opens a gap of about ~1 meV at Qm=[0.0045 0.0045 0] for the other 
two modes. The gapless mode is the phason excitation while the gapped modes arise from the 
spin-flip processes and thus have in-plane components of the spiral plane defined by Qm and 
the hexagonal c-axis. These modes can be detected by polarized neutron scattering 
experiments. Unfortunately, since we used time-of-flight techniques with unpolarized 
neutrons (known to have relatively poor Q resolutions) and with 10 co-aligned samples, the 
splitting at low energy with such a small Qm value cannot be observable within the 
resolutions of our experiments. 
 
In summary, we have succeeded, for the first time, in measuring the full spin waves of 
BiFeO3 by co-aligning 10 single crystals, and have determined the two most important 
exchange parameters, which are the nearest and next-nearest neighbor interactions: J=4.38 
and J’=0.15 meV, respectively. Surprisingly, a simple spin Hamiltonian with these two 
exchange interactions is found to be adequate to explain the measured full spin waves over 
the entire Brillouin zone. By combining Monte-Carlo calculations, we further estimated an 
effective Dzyaloshinskii-Moriya interaction (D=0.107 meV) responsible for the 
incommensurate magnetic structure with an extremely long period of 620 Å. According to 
our spin wave calculations, this Dzyaloshinskii-Moriya-like term affects only the very low 
energy part of the spin waves. 
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Fig. 1 (Color online) It shows (a) the crystal structure of R3c space group with the magnetic 
unit cell (dashed line) for a simple G-type structure. The horizontal arrow denoted by D 
indicates the direction of the Dzyaloshinskii-Moriya-like vector: (b) a photo of ten crystals 
co-aligned within 3° of one another, and (c) Brillouin zone of the hexagonal symmetry with 
the thick lines indicating some of high symmetry directions, along which the data are 
presented and discussed in the text. 
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Fig. 2 (Color online) (a) Theoretical spin waves calculated with three different Hamiltonians 
as discussed in the text. The two inserts are for the blown-up figures of the low energy parts 
to illustrate the effects of the Dzyaloshinskii-Moriya-like term (D) on the spin waves along 
the Γ-M and Γ-A directions, respectively. (b) Experimental spin waves measured at 
AMATERAS beamline (circles) and MERLIN beamline (contour plot) together with the 
theoretical spin waves (full line) calculated with J=4.38 and J’=0.15 meV: the dashed line is 
for the theoretical spin waves calculated with Hamiltonian having the nearest neighbor 
interaction alone. Inserts are for the momentum cut at the M and A points. 
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Fig 3 (Color online) A contour plot of the spin waves is shown along the [0 0 l] direction (L-
M-L) with lines for theoretical curves as discussed in the text. 
 

 


