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Weak topological insulators have an even number of Dirac cones in their surface spectrum and
are thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the
presence of disorder alone will not localize the surface states, rather, the presence of a time-reversal
symmetric mass term is required for localization. Through numerical simulations, we show that in
the absence of the mass term the surface always flow to a stable metallic phase and the conductivity
obeys a one-parameter scaling relation, just as in the case of a strong topological insulator surface.
With the inclusion of the mass, the transport properties of the surface of a weak topological insulator
follow a two-parameter scaling form.

PACS numbers: 73.20.-r, 71.23.-k, 72.15.Rn

The conventional band theory categorizes crystals as
metals, semiconductors, or insulators depending on the
size of their band gap. Over the last few years it
has been realized that this categorization overlooks the
fundamental fact that not all insulators are equiva-
lent. Topological insulators are characterized by non-
trivial band topology leading to gapless metallic surface
states which are robust to disorder that preserves time-
reversal symmetry (TRS) [1]. In two dimensions (2D),
the quantum spin Hall (QSH) insulator possesses a pair
of counter-propagating edge modes which are protected
from backscattering by TRS. In three dimensions (3D),
topological insulators are classified as either strong (STI)
or weak topological insulators (WTI). The surfaces of
STIs have an odd number of 2D Dirac fermions and have
garnered much of the attention as TRS disorder cannot
localize the surface states unless it is strong enough to
move states across the bulk energy gap. In contrast, the
WTIs have an even number of Dirac fermions and are
believed to be unstable to disorder [1].

This belief stems partially from comparisons with
graphene. Superficially, WTIs and graphene are simi-
lar in that their low energy electronic properties are de-
scribed by an even number of Dirac fermions [2]. While
both systems have TRS implemented by an anti-unitary
time-reversal operator Θ, they differ fundamentally in
that Θ2 = +1 for graphene from SU(2) spin symme-
try [3] while for a WTI Θ2 = −1 due to the presence of
strong spin-orbit coupling. This places graphene in the
orthogonal (AI) symmetry class while WTIs belong to
the symplectic (AII) class in the Altland-Zirnbauer clas-
sification [4]. The consequences of the minus sign are
profound. The first quantum correction to the Drude
conductivity is determined by interference of time rever-
sal symmetric paths. In the orthogonal class this inter-
ference is constructive (weak localization) and eventually
leads to localization of all single particle states. In con-
trast, in the symplectic class the interference is destruc-
tive (weak anti-localization) giving rise to an enhance-

ment of the conductivity and a stable symplectic metal

phase [5]. Hence the metallic phase of graphene is un-
stable to disorder coupling the Dirac fermions [6], but is
stable in WTIs.

An STI is also in the symplectic class. With an odd
number of Dirac fermions on its surface, it always flows
into the symplectic metal [7, 8], reflecting the presence
of a topological term in the effective field theory (non-
linear sigma model) describing diffusion [9, 10]. This
topological term is absent in the same description of a
WTI suggesting that localization should occur. In con-
ventional semiconductors with spin-orbit coupling this
leads to a metal-insulator transition at a critical conduc-
tivity σc ≈ 1.42 e2/h [11].

It is the purpose of this work to explore the precise
conditions under which a WTI undergoes localization.
One reason that this is a pressing question is the fol-
lowing argument [12]. If one considers obtaining a WTI
by stacking 2D layers in the quantum spin Hall (QSH)
phase, a surface parallel to the stacking direction would
consist of pairs of one-dimensional (1D) counter propa-
gating helical modes. The number of such modes taking
part in transport can be even or odd depending on the
number of layers. However, an odd number of 1D modes
in the symplectic class necessarily leads to the presence of
a perfectly transmitted mode and thus a minimum con-
ductance of e2/h [13, 14]. While this argument is one-
dimensional in nature as the sample thickness is constant,
it suggests that a WTI can under certain conditions avoid
localization. In the extended two-dimensional surface,
the meaning of this parity effect is unclear, raising the
question: what is the scaling behavior of the conductiv-
ity in disordered WTIs?

In this paper, we demonstrate, by numerical simula-
tions, that the scaling flow depends on the presence or
absence of a specific time-reversal-symmetric mass, to be
defined below. In the presence of this mass, a gap opens
up in the spectrum which can lead to localization. Dis-
order can still drive the system into a metallic phase,
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Disorder structure Disorder type Notation

Vx0 · τ
x scalar potential (2×AII)

Vyx · τyσx gauge potential (2×AIII)

Vyy · τyσy gauge potential (2×AIII)

Vyz · τ
yσz mass (2×D) m = 〈Vyz〉

Vz0 · τ
z scalar potential (2×AII)

V00 · 11 scalar potential (2×AII) µ = −〈V00〉

TABLE I. List of time-reversal invariant disorder terms on
the surface of a WTI with two Dirac cones. If only one of the
disorder structures is present in the system, the type indicates
the disorder class of the system and the effect of the disorder.
For example, with only Vyz(r)τyσz, the system breaks up in to
two systems, each identical to a Dirac cone with random mass
in class D. Hence, multiple disorder structures are required for
the system to be class AII.

realizing a metal-insulator transition at a critical value
of conductivity consistent with what is observed in con-
ventional semiconductors. In contrast, in the absence
of this mass the system always flows into the symplec-
tic metal. We demonstrate that this flow follows one-
parameter scaling with a positive beta function, just as
in the case of an STI [7, 8]. The phase diagram emerg-
ing from these observations (cf. Fig. 1), suggests that
one-parameter scaling is not realized throughout, as one
might expect from the minimal non-linear sigma model
description. Instead, we present data supporting two-
parameter scaling, the effective field theory of which re-
mains unknown.
Hamiltonian and disorder structure. In the following

we specialize to the case of a WTI with two Dirac cones,
for which the low energy electronic properties are de-
scribed by the Hamiltonian [15]

H = ~vDτ0(σxkx + σyky) + V (r), (1)

where τ0 = σ0 = 11 is the identity, τx,y,z, σx,y,z are the
Pauli matrices in valley and spin space, respectively. H
is invariant under the time-reversal Θ = iσyK where K
is the complex conjugation operator. The Dirac velocity
vD (taken isotropic for simplicity) and ~ are set to 1
henceforth. The disorder potential is written

V (r) =
∑

αβ

Vαβ(r) τ
α ⊗ σβ (2)

with Vαβ(r) a scalar potential and α, β ∈ {0, x, y, z}. The
six terms respecting time-reversal, listed in Table I, are
independently distributed with correlation

〈

δVαβ(r) δVαβ(r
′)
〉

= gαβK(r− r
′) (3)

where
∫

d2rK(r) = 1. The two terminal conductiv-
ity σ of a system of size L is obtained numerically
by adapting the transfer matrix method of Ref. 7 to
the current problem. (The width W is taken large

FIG. 1. The phase diagram of the Hamiltonian (1) as a func-
tion of mass m and disorder strength gαβ = g. The solid
line marks the metal-insulator transition at µ = 0, whereas
the dashed line marks the transition at finite µ. At the clean
Dirac point (g = µ = 0), there is a topological phase tran-
sition between the two types of insulators. With increasing
disorder or chemical potential µ, a metallic phase appears
separating the two topological sectors.

enough that the conductivity is independent of the ratio
W/L.) Each disorder term is Gaussian correlated with
K(r) = exp(−r2/2ξ2)/(2πξ2). We also take the averages
〈Vαβ(r)〉 = 0, except for Vyz and V00 as explained below.
It is useful to first analyze the system in the clean

case, where Vαβ are constants. 〈V00〉 acts as the chemical
potential µ which shifts the energy spectrum trivially.
τyσz anticommutes with all the other potentials (except
11) as well as the kinetic term σ · k; the presence of this
term always gaps the system, and hence we refer to m =
〈Vyz〉 as the “mass.” The energy spectrum of the system
is given by

(

E(k)− µ
)2

= k2 + V 2
x0 + V 2

yx + V 2
yy + V 2

z0

± 2
√

(V 2
x0 + V 2

z0)k
2 + (Vyxkx + Vyyky)2 +m2, (4)

with minima at k2 = V 2
x0 + V 2

yx +V 2
yy + V 2

z0 and kx/ky =
Vyx/Vyy, in which case we have (E − µ)2 = m2. There-
fore, the energy gap is 2|m| and the system is insulating
when |m| > |µ|. The cases m > |µ| and m < −|µ| corre-
spond to the two topological sectors in the 2D AII class,
i.e. the trivial and QSH insulator [16]. The intermediate
metallic region −|µ| < m < |µ| separates the two phases.
In the presence of disorder, a similar description ap-

plies – by varying m one can take the system between
the two insulating phases. As conjugation by τx flips
the sign of m, a conducting state should be realized at
m = 0. Due to the stability of the symplectic metal one
does not expect generically a direct transition between
the insulating phases [17–19]. The resulting phase dia-
gram is shown in Fig. 1. The shape of the phase diagram
around the clean Dirac point g = m = µ = 0 is consis-
tent with the renormalization group flow of the coupling
parameters gαβ , m, and µ away from that point [20]. At
a finite chemical potential, there is a range of mass val-
ues |m| . |µ| where the system undergoes two transitions
with increasing disorder strength (dashed line in Fig. 1).
A similar mass term can be defined for an arbitrary even
number of Dirac cones, thus the phase diagram in Fig. 1
holds generally for WTI’s [20].
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FIG. 2. Demonstration of one-parameter scaling at m = 0.
Conductivity as a function of system size for various parame-
ters all collapsed (by shifting the raw data horizontally) onto
one scaling curve. At large σ, the slope dσ/d lnL approaches
1/π (gray line) consistent with weak anti-localization. Here
g00 = g for dotted lines, g00 = 0 for dashed lines. For all other
αβ, gαβ = g. (Inset) Raw data σ vs. L/ξ.

The numerical data supporting the phase diagram in
Fig. 1 are shown in Fig. 2 and 3. At m = 0 the conduc-
tivity always flows to the symplectic metal, regardless of
the strength of the disorder (cf. Fig. 2). By rescaling the
length (L/ξ → L/ξ∗) we can collapse all the data on a
single curve demonstrating one-parameter scaling along
the m = 0 line. At large conductivity, the beta function
β(σ) = d(ln σ)/d(lnL) approaches 1/πσ as predicted for
weak anti-localization [5].

By varying m, it is possible to drive the system to an
insulator, as shown in Fig. 3(a). At small m the system
remains a symplectic metal. At some critical m a metal-
insulator transition occurs and it ceases to conduct. For
a fixed nonzero m such that the clean system is insulat-
ing, disorder drives the system into a metallic phase at
some critical disorder strength gc that depends on m, as
demonstrated in Fig. 3(b). In both these cases, at large
conductivity the slope dσ/d lnL approaches 1/π indica-
tive of weak anti-localization.

Conditions for localization. Since a WTI is always con-
ducting in the absence of mass, it is pertinent to discuss
under what circumstances one expects a nonzero mass.
The potential Vyz(r) couples valleys centered at different
momenta and thus requires short-range scatters. Fur-
thermore a non-zero mass can only arise when the sur-
face potential is commensurate with an even number of
unit cells; such as in the case of cleaving the surface at a
crystal plane [12], or when the WTI is grown on a lattice-
matching substrate. As such, a non-zero mass would be
marked by an enlargement of the unit cell and would ap-
pear in a crystal diffraction experiment as a peak of order
Gν/2, where Gν is a reciprocal lattice vector character-
izing the weak topological invariants of the WTI [21]. On
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FIG. 3. (a) Metal-insulator transition as m is varied. Con-
ductivity is plotted vs. system size for fixed µξ = 1 and
gx0 = gyz = 2. For large m the system flows to an insulating
state, while for small m the system is conducting. Among
the conducting curves, the slope dσ/d lnL approaches 1/π at
large σ. The data show a metal-insulator transition at σc

consistent with the known value of 1.42 e2/h [11]. (b) Metal
insulator transition as disorder strength gαβ = g is varied.
The plot is σ vs. L/ξ for fixed mξ = 0.05 and µ = 0. Increas-
ing disorder increases the conductivity, inducing a transition
from an insulating phase to a metallic one at some critical g.
The dashed line indicates a slope of 1/π. These figures are
consistent with the phase diagram in Fig. 1.

the other hand, a period-doubling perturbation could in-
dicate a valley-mixing term other than m. (The other
possible terms being 〈Vx0〉, 〈Vyx〉 or 〈Vyy〉.) It may also
be possible to measurem via spin and angle-resolved pho-
toemission spectroscopy (spin-resolved ARPES), by com-
paring the spin-up and spin-down intensities at wavevec-
tor Gν/2. This proposal is motivated by the form of
the potential τyσz which differentiates the up and down
spins. Localization may also occur due to lattice effects
or higher order terms in the Hamiltonian [17, 22, 23].
In the case where the WTI consists of an odd number

of QSH layers, we argue that the mass must be identi-
cally zero. Consider stacking n QSH layers, with each
layer in the a1, a2 plane, and the layers a3 offset from
one another. For simplicity we impose periodic bound-
ary condition in the a3 direction. The surface spec-
trum of a plane parallel to a3 will have two Dirac cones,
centered on different time-reversal invariant momenta,
ka,kb, such that (kb − ka) · a3 = (Gν/2) · a3 = π. The
second quantized kinetic Hamiltonian will be of the form
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Ψ†
a(k−ka)·σΨa+Ψ†

b(k−kb)·σΨb. Ψ
† and Ψ are the cre-

ation and annihilation operators satisfying the boundary
condition Ψ(r+na3) = Ψ(r). To cast this in to the form
of the effective Hamiltonian (1), we perform the gauge
transformation Ψµ → Ψµe

ikµ·r for each of the fermion
species. The gauge transformation will in general change
the boundary condition for the operators Ψa,Ψb. Notice
that exp[i(ka − kb) · (na3)] = (−1)n, and hence for odd
n the transformed operators will have differing bound-
ary conditions: i.e. one periodic and one antiperiodic.
The mass term coupling the fermion species together in
the effective Hamiltonian must have antiperiodic bound-
ary conditions, hence averages to zero. Therefore, for an
odd number of stacked QSH layers, m is zero and the
surface (parallel to the stacking direction) always flows
to a metallic phase. These results settle the question of
which of the two possible flow diagrams consistent with
the quasi-1D numerics in Ref. 12 is actually realized.
Two-parameter scaling. The existence of one-

parameter scaling along the line m = 0 suggests that
there might be a two-parameter scaling collapse for
the entire range of parameters when the mass is non-
zero, analogous to the quantum Hall transition (in A
class) [24–26]. Figure 4(a) shows a possible flow for con-
ductivity σ and the (unknown) second scaling parameter
j. The horizontal scale j distinguishes between the two
topological phases, much in the same way as the Hall
conductivity in the quantum Hall case.
Even without a precise definition of j as an experi-

mental quantity, we may still infer a number of prop-
erties of the flow diagram. (1) For large conductivity
σ, β(σ) is positive and σ flows upward towards infinity.
(2) There are two insulating stable fixed points (crosses)
at (σ, j) = (0,±∞) and regions which flows toward them
(shaded regions). (3) Consequently, there must be unsta-
ble fixed points (dots) at j = ±∞ which mark a metal-
insulator transition. (4) Near j = 0, the system must
flow to a metallic phase as there should not be a direct
phase transition between the two insulating phases. Fig-
ure 4(a) gives the simplest flow diagram consistent with
these requirements.
The two-parameter scaling of (σ, j) implies that σ(L/ξ)

cannot be collapsed onto a single scaling curve (as in
Fig. 2), but onto a family of curves parameterized by a
single variable x. The scaling form is

σ = f(L/ξ∗;x), (5)

where all the microscopic parameters m, µ, gαβ, ξ, etc.
determine the conductivity only via the two functions x
and ξ∗.
In Fig. 4(b), we present the accompanied data for our

two-parameter scaling hypothesis, by collapsing σ vs.
L/ξ∗ onto a family of curves. For each curve, the pa-
rameters µ, gαβ were fixed while m is varied until σ(L)
overlaps with the existing set of curves. The data show
reasonable agreement with the scaling form (5).

(a) (b)
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FIG. 4. (a) Two-parameter flow which captures the QSH-
metal-insulator transition in the AII class. The scaling vari-
ables are σ and j, the latter of which separates the normal /
QSH insulator phases. (b) Numerical data σ(L/ξ∗), demon-
strating that the conductivity curves may be collapsed on to
each other. The gray line is the data at m = 0 from Fig. 2.
The raw data and parameters are given in the Appendix.

Quantum transport at the surface of a weak topolog-
ical insulator thus shows a scaling structure similar to
that of the quantum Hall plateau transitions. It should
be possible to interpret experiments on weak topological
insulators in terms of the above Dirac model, and possi-
bly to control the parameter m by choosing a substrate
whose lattice potential generates the massive perturba-
tion. In addition, the electronic structure of thin films of
STI’s can be mapped to the two Dirac cone system stud-
ied here, with the tunneling between the surfaces taking
the role of the mass [20]. Our results should motivate the
search for WTI candidate materials, of which there are
few. It remains to be seen if the two-parameter flow is
generic to all non-interacting disordered systems in the
symplectic class.
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