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We investigate scattering through chaotic ballistic quemtots in the Coulomb blockade regime. Focusing
on the scattering phase, we show that large universal segsi@merge in the short wavelength limit, where
phase lapses of systematically occur between two consecutive resonan@es.results are corroborated by
numerics and are in qualitative agreement with existingegrpents.
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Quantum mechanics fundamentallyffdis from classical from about twenty down to zero [5]. A crossover from the uni-
mechanics in that time evolutions are determined by comversal regime, where successive peaks are in phase, to a meso
plex probability amplitudes instead of real probabiliti@he  scopic regime, where phase lapses occur in a random fashion,
associated phase is a key element to understand mesoscopias observed when decreasing the number of electrons in the
transport experiments on Aharonov-Bohm (AB) conductanc&®D by the action olg. Multi-terminal configurations with
oscillations, weak localization, and conductance fluetust one QD in each arm of the AB interferometer have also been
[1]. However, these transport measurements, like any otheénvestigated [4], which determined the important role o th
measurement, do not directly measure scattering phases. mnagnetic field in the phase lapses. The understanding of the
their phase-sensitive experiment, Yacaiyal. pioneered an crossover from the mesoscopic to universal regime and the
entirely new field of mesoscopic physics, by embedding a balrole of the symmetries are the main goals of our work.
listic quantum dot (QD) in one arm of an AB interferometer For lateral QD in the CB regime a single lead channel dom-
[2]. The sustained interest in these and following [3-5] ex-inantly couples to the QD, and transport through the QD is
periments, that persists until today, relies on thi@ialilty to  characterized by a 2 scattering matrix
consistently and generically explain these measurements. o o

When a QD in the Coulomb-blockade (CB) regime is S = ( rt ) - eiw( e cosy €7sing | )
placed in one arm of a mesoscopic ring threaded by a flux tr e™sing ie™ cosy
¢ (see the inset of Fig. 1) the conductance through the ringya notet (v

) andr (r’) the transmission and reflection ampli-
reads [6, 7]

tudes, respectively, for particles coming from the lefylt)

of the QD. The anglé is restricted to the interval [@&), while

the phaseg, n and¢ are defined on [®r). The scattering
phasex is related to the density of states of the QD through
with the quantum of fluxpo. Measuring the lowest harmonics the Friedel sum rule [6, 8-10]. When considering the phase
of the AB oscillations inp allows to extract the phagk asa  evolution as a function of an external parameter (Nkg it
function of a gate voltag¥y applied to the QD. Under suit- is convenient to work with the accumulated phaggwhose
able conditiong; can be related to the scattering phase of thaange of definition is not restricted to the interval2).

QD [7]. A multi-terminal configuration is required in order t Eq. (2) represents the most generak 2 unitary matrix.
get a one-to-one relationship between the two phases, imhile When time-reversal invariance is present, onefas 0 or

a two-terminal set-up; can only take the values 0 @3, 6].  x. Right-left parity symmetry would restri¢t to either O or

In the multi-terminal case a gradual increase @f the trans- x. Here, we consider generic QDs with arbitraty When
mission phase is obtained as a function of the gate voltage fahe many-body problem is considered in its full complexity,
every CB peak, in agreement with the Friedel sum rule [8-10]S represents anfiective one-particle scattering matrix that
Abrupt lapses ofr occur between resonances in both config-can be obtained for instance through the embedding method
urations at values of for which the transmission amplitude [11, 12]. If we restrict the description of the many-bodylipro
of the QD is so small that the AB oscillations are below thelem to the constant-interaction model (CIM) the CB phenom-
experimental visibility threshold. For relatively larg®Qvith ena can be interpreted in terms of single-particle quastiti
a few hundred electrons [2, 3], the lapses were seen to appefds3], and close to resonancesjs given by the transmission
systematically between every consecutive pair of resa@®gmnc and reflection amplitudes of single-particle states in armea
This surprising behavior, termed universal, is observeédi  field potential. When the underlying classical scatteriag i
or multi-terminal configurations. Smaller dots were more re chaotic,S has well defined statistical properties determined
cently investigated, where the number of electrons wasdtuneby the symmetries of the problem only [14]. In structuregwit

g=Go+ ) GnCOS (2Ne/¢o+ ), (1)



time-reversal symmetry, = € sing and, even ift is a com- - . - . - . : .

plex continuous function of the real variallg, the phaser 1 4
exhibits a phase lapse sfwhenevet vanishes.

Within the CIM and in the absence of a magnetic field the I / \
one-particle wave-functions can be chosen to be real. \Wih t 5 05 \ ;o
exception of peculiar cases with veryfférent values of the =<
resonance widths between consecutive resonances, a zero 'sf 0 /\ /\
the transmission generically appears between two suveessi 0 /\
resonances depending on the sign of [10] v \/ \/

I Y B - LAk 2
Dn = Yn¥n¥ne1¥net - ) 05 . | . 1 | . .
The partial-width amplitude (orfeective coupling) of the 0 0 10 15 20 %
eigenstate, of the QD is given by [13] kL
o n2KP, 172 ~w | FIG. 1: _0“ order Eie_ssel fun_ction]o(kL). T_he shgded areas indi-
Y’ = (T) f dy Dy () (X, y) . (4)  cate regions wherB, is negative. For two-dimensional systems, the
0 width of these intervals, and the probability of not obtagha phase

H Do is the first t | subband function i lapse between two resonances, decreaseAks~ (kL)™. Inset:
ere, &y IS the Iirst transversal subband wave-Tunclion N yp,.on6y.Bohm interferometer, threaded by a ffuxwvith an asym-

the the left (right) lead of widttW, the integration is along  metric dot (shaded) tunnel-embedded in its upper arm. Tétantie
the transverse coordinayeat the entrance or exit of the QD petween the entrance and exit points of the dat i§he dashed lines
located atx = X, P. is the transparency of the tunnel bar- on the arms of the interferometer stand for any number ofrpiate
riers, k is the Fermi wave-vector in the leads, amds the  additional leads.

electron mass. In lattice models with one-dimensionaldead

[7, 10] the two partial-width amplitudes are simply propor- N )
tional to the value of the wave-function at the extreme pointhiS way we account for the transition from a mesoscopic to a
connecting the QD to the corresponding lead. universal regime.

We call y}y, the parity of the n resonance[10]. When Long-range wavefunction correlations in quantum chaotic
D, > O (equal parity of then" and  + 1) resonances) Systems were first pointed out by Berry [24], who suggested
there is one zero (or an odd number of zeros) between th® model the wavefunctions as random superpositions ofplan
nth and O+ 1)5t resonances, while fdD, < O (opposite par- Waves with fixed energ}lzkz/(Zm). For a two-dimensional
ities) there is no zero (or an even number of zeros) betweeghaotic billiard with eigenfunctiong,, this gives the wave-

the two resonances. For one-dimensional scattebgris al-  function correlator
ways negative, which results in the absence of transmission
zeros reflecting the impossibility of obtaining destruetin- Yn(r)Yn(r’) = Jo(KIr = r’l)/A. (5)

terfering paths in one dimension[8]. Numerical simulasion

on two-dimensional disordered lattice systems, on therothelhe bar stands for a local averagiis the area of the billiard

hand yield an equal probability for positive or negatbg andJ is the 0" Bessel function of the first kind. Corrections

[10], which is at odds with the experimental observation of ato Ed. (5) appear in confined systems when the observation

universal regime with zeros between any two consecutive reg0ints approach the boundaries [25], which is the case we are

onances. Several theoretical refinements have been pbposaterested in. For # r’, these corrections are however small

to solve the puzzle [10, 16-23], where specific geometries oand we will neglect them. Eq. (5) has been successfully used

effective couplings, or extensions of the CIM are considered to explain the long-range (in energy) modulation of the peak
The latter path is in principle the most natural one, and wageight distribution in the CB regime [26].

actually already suggested in Ref. [2]. However, the small If we call L the distance from the entrance to the exit of

sizes that can be handled within a full many-body descripthe QD and assume that successive eigenfunctions are uncor-

tion make the universal regime hardly reachable. Moreoverelated we have for the ca¥¢ < L of relevance for us

even if the influence of electron-electron interaction can b _

spotted in some circumstances [11, 21, 23], the correspond- Dn ~ Jo(knL)Jo(kni1L) . (6)

ing results are not generic. On the other hand, the CIM gives

an excellent description of the statistical distributidnttte ~ Taking L as the typical linear dimension of the QD, we have

height of the CB peaks [13, 15], which is determined by thek,,1 — k, ~ Ak = 7/(kL?). Thus,D, is negative when the

one-particle widthsy',;’. It is then expected that the statistics Bessel functions in Eq. (6) haveffirent signs, which only

of the resonance parities and consequently of the transmigappens ifkL falls in an interval of length_Ak before one

sion zeros are within the reach of the CIM. Below, assumingzero ofJp(kL). This is sketched in Fig. 1. In the semiclassical

that this is the case, we incorporate well known correlation limit kL > 1 we haveJo(kL) ~ v2/(zkL) cos(kL — 7/4) and

of quantum chaotic wavefunctions in our analysisDgf In  therefore the probability? of obtaining a negativ®, can be



1 F T T b kL
2 05 L | 0 10 15 20 25
T T T T T
0 L 30
2w T T T r
VT
O 1 1 1
0.034 0.0345 0.035
Ve 10 +
FIG. 2: Transmissioit|?> and scattering phaseas a function of the
applied gate voltag¥,. The number of electrons in the dot varies . .

between 174 and 182. Smooth increases iof « obtained for each 0

resonance alternate with phase lapsessofvhen the transmission —0.006 —0.004 —0.002 0
vanishes (dotted vertical lines). V.
g
estimated as the ratio of 2k over the period 2, that is, FIG. 3: Thick lines: accumulated scattering pha&eé/x, and num-
ber of resonances (zerds),) as a function oV (orkL). The shaded
1 spots indicate the regions wheg lagsN,. They are separated ap-
P~ KL ® (7) proximately byr in kL. Thin lines: a./x for a small positive and

negative magnetic field. Inse® = (AN, — AN,)/AN; taken at vari-
This simple analysis explains why when the dot is progrespys intervals of/y as afunctlon okL. The line is a guide-to-the-eye
sively filled the equal-parity cas®f > 0) results with prob- that decreases akL() showing the good agreement of the numeri-

ability approaching one. Moreover, it also shows that the secal calculations with the prediction of Eq. (7).
guence of peaks and zeros appears over intervets ithat
are of lengthr, containing a numbekL of resonances. The
sole assumption that wave-functions have quantum chaotide diference of slopeAN;/AVy — AN,/AV,. In agreement
correlations thus predicts the emergence of large univeesa With the theoretical analysis, the regions where there are n
quences of resonances and transmission zeros. This is og@ros between resonances show up with a periodicitil(n
main result. of approximatelyr and are separated by intervals where there
In order to illustrate and test our analytical prediction weis an alternation of peaks and zeros. Upon increakjreg-
have performed numerical calculations of the transmissiojuences exhibiting perfectly alternating resonances anasz
amplitude of spinless electrons through a noninteractibg Q become larger and larger, favoring the observation of tle un
with the shape of a desymmetrized stadium billiard, whereversal behavior.
one of the quarter circles is replaced by a cosine curve. This The importance of a magnetic field in the phase-sensitive
is sketched in the inset of Fig. 1. The QD is connected toneasurements has been underlined in experimental [4] and
leads through tunnel barriers as in Ref. [15]. The parametheoretical [8, 27] works. Once we have a magnetic field
ter of variation is the gate voltagg, which induces changes breaking time-reversal symmetry, the wave-functions are n
in the wave-vectok within the QD. Phase increasesmfire  longer real,D, becomes complex, and our analysis in terms
correlated with transmission peaks, while phase lapses of of the parity of the resonances is no longer applicable. We in
are assigned at the values\¢f where the transmission van- cluded a magnetic field in our numerical calculations, using
ishes. We show in Fig. 2 a sequence of eight resonances folesymmetrized structure in order to truly break time-rsakr
174 to 182 electrons on the dot, similar to the experiments o$ymmetry [28]. We observed that the exact transmissiorszero
Refs. [2, 3]. This sequence exhibits a perfect alternation oobtained aB = 0 become minima with small (but finite) val-
resonances and zeros. We found that this is the generic behaves. Such a behavior is expected, since a mono-channel QD
ior for kKL > 10. has divergent probability of exhibiting a vanishiftgwhen
We next present in Fig. 3 (thick lines) the accumulatedB = 0, while the transmission distribution is uniform in the
scattering phase!” (the superscript indicates that we fol- interval (Q 1) for the case where time-reversal symmetry is
low the convention used in the experiments of taking all phas completely broken [13-15].
lapses as-r), together with the number of accumulated res- Avoiding transmission zeros in the complex plane elimi-
onances (zerof. N, andN, grow with almost the same nates ther phase lapses in favor of continuous jumps with
mean rate fokL > 10 (at least up to the maximum values of large (but finite) derivatives and magnituger. At finite
kL ~ 100 that we used). In the inset we show the probabilfields the ambiguity in the definition of the accumulated ghas
ity £ = (AN, — AN,)/AN; of obtaining more resonances than «. is then lifted. In Fig. 3 we present, for a very small pos-
transmission zeros in an interval @f. # is proportional to  itive (negative) field (thin lines). The phase jumps for dmal
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positive fields are opposite to those for negative fields bed t kL. Our numerics indicate that this crossover occurs around
difference in the accumulated phases is of statistical natfire (&L ~ 10 which, for two-dimensional structures, correspond
the order of the square root of the number of avoided zeros}p putting~ 15 electrons on the dot. This is qualitatively in
illustrating the dffusion away from the origin in the complex agreement with the crossover reported in Ref. [5] and with
plane for smallB fields. On the other hand, the mean slopethe universal behavior reported in Refs. [2, 3], which work
of the accumulated phase is the same in both cases, and coin-the rangekL > 50. We note that another condition is that
cides with the slope ofN;. We point out that the dlierence kL is large enough that the wavefunctions resolve the chaotic-
between the Friedel and transmission phases [8, 9] arises fr ity of the cavity, which also usually occurs aroukd ~ 10.
the ambiguity in the definition af. at B = 0. This ambiguity  We predict the disappearance of the observed universaheegi
is lifted if we defineac(B = 0) = limpg_,o-ac(B). (i) in the presence of a large magnetic field and (i) in larger
Experimentally, the visibility threshold for the AB osefl  more disordered dots in thefflisive regime. These predic-
tions can make the continuous phase evolution at small fieldgons could be the basis for a comparison with alternatiee th
indistinguishable from the phase lapsesBat 0. Breaking ories, like the one of Ref. [21].
time-reversal symmetry reduces the probability of obtaini  In conclusion we have provided quantitative, checkable
very small transmission values and thereby favors the shser predictions for the probability of observing long sequence
tion of a continuous phase evolution as a functiovVgf The  of alternating transmission zeros and resonances in gogtte
magnetic field needed for breaking time-reversal symmaeitry i through quantum dots, which are consistent with the experi-
the QD scales als™'/2 [13, 15]. Experimentally, larger fields ments of Refs. [2-5]. We stress the probabilistic charasfter
have been used in Ref. [2], where however abrupt phase lapsesr findings, and in particular that the absence of phase$aps
n are enforced by the use of a two-terminal setup. Refs. [3, Shetween resonances is always possible. We hope that this wil
on the other hand used fields too weak to break time-reversgtimulate new experimental investigations.
symmetry. Ref. [4] reported phase lapses, and thus univer- we thank P. Schmitteckert for useful discussions. We ac-
sal behavior, in specific magnetic field ranges only, whereyngwledge support from the Spanish MICINN through project
presumably, the transmission drops below the experimentgt|s2009-07277, the NSF under grant No DMR-0706319, and

visibility threshold and is thus indistinguishable fromrae  {he ANR through grant ANR-08-BLAN-0030-02.
zero. We predict that, under the experimental conditions of
Refs. [3, 5] a magnetic field of the order of 5@0will elimi-
nate some of the phase lapses observed at weak fields.
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