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We investigate electronic transport in dual-gated twisted bilayer graphene. Despite the sub-
nanometer proximity between the layers, we identify independent contributions to the magnetore-
sistance from the graphene Landau level spectrum of each layer. We demonstrate that the filling
factor of each layer can be independently controlled via the dual gates, which we use to induce
Landau level crossings between the layers. By analyzing the gate dependence of the Landau level
crossings, we characterize the finite inter-layer screening and extract the capacitance between the
atomically-spaced layers. At zero filling factor, we observe an insulating state at large displacement
fields, which can be explained by the presence of counter-propagating edge states with inter-layer
coupling.

PACS numbers: 72.80.Vp, 73.22.Pr, 73.43.-f, 73.22.Gk,73.21.-b

The bilayer 2-dimensional electron gas (2DEG) con-
sists of two closely spaced 2DEGs, where inter-layer
Coulomb interactions and tunneling effects can lead to
new behaviors which are not present in the individual
layers [1–3]. In these bilayers, an insulating spacer is nec-
essary to separate the 2DEG layers. In the case of twisted
bilayer graphene, the layers can be stacked directly on top
of each other, yet still retain a degree of independence.
This is possible because of the carbon honeycomb lattice
of graphene, which results in weak coupling between the
layers [4], as well as a circular Fermi surface centered at
nonzero K vectors [5]. The latter is key, because a rela-
tive twist angle between the graphene bilayer lattices can
cause the Fermi surfaces of the two layers to not overlap
at low densities (Fig. 1a,b). This preserves the linear
Dirac dispersion in the twisted bilayer graphene [6–12],
but with twice the number of Dirac cones due to the two
layers [6, 9, 12].

Here, we present magnetoresistance measurements of
dual-gated twisted bilayer graphene devices (twisted bi-
layers), which exhibit the quantum Hall effect (QHE)
and magnetoresistance oscillations of two monolayer
graphene (MLG) sheets conducting in parallel. As we
vary the gate voltages, we observe inter-layer Landau
level crossings which allow us to quantify both the layer
charge transfer, as well as the finite screening effects be-
tween the layers. This incomplete screening of the ap-
plied field, due to graphene’s small density of states and
the close spacing between the layers, allows us to extract
the inter-layer capacitance. Lastly, at high magnetic
fields we observe a pattern of insulating states centered
at zero density which resemble those observed in AB-
stacked bilayer graphene (AB-BLG) [13, 14], but origi-
nate from layer-polarized edge modes.

Our twisted bilayer devices are fabricated using a
PMMA-transfer technique to sequentially stack two sep-

arate MLG sheets such that they overlap on top of a
hexagonal Boron Nitride (h-BN) flake [15, 16]. The bi-
layer region formed at the overlap is then contacted, and
a topgate is fabricated with a h-BN flake as the dielectric
insulator [17]. The final devices are measured in a He3
cryostat, with the temperature at 300mK unless other-
wise noted.

Using our devices’ dual gates we can independently
control the total carrier density ntot of the twisted bi-
layer, as well as the displacement field D applied nor-
mal to the layers (Fig. 1c). The total carrier density of
the twisted bilayer is entot = (CTVTG + CBVBG), where
CT(B) is the capacitance per unit area to ground of the
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FIG. 1. Twisted bilayer graphene device structure and zero
magnetic field resistance measurements. (a) Twisted bilayer
graphene lattice with twist angle θ. (b) Twist angle separates
the Fermi surface of each layer in K-space. (c) Schematic of
a dual-gated twisted bilayer device with h-BN gate dielectric
insulators. Dual-gates allow for independent control of the
carrier density and displacement field D. (d) Zero-magnetic
field resistance R at the charge neutrality point at different
values of D. The resistance at the charge neutrality point
decreases with increasing D. Peaks have been offset in density
for clarity.
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FIG. 2. Quantum Hall effect, Landau level (LL) crossings, and screening in twisted bilayers. (a) Schematic of twisted bilayer
LL spectrum. LLs are 8-fold degenerate (g=8) due to spin, valley & layer degeneracy. Displacement field D breaks layer
degeneracy (g=4). (b) 1/Rxy as a function of total filling factor νtot at B = 9T. At D = 0, steps in 1/Rxy of 8e2/h are observed
(black line); at D/ε0=−145 mV/nm, new steps of 4e2/h develop. (c) Diagram of inter-layer screening. The applied field D
is screened by charge imbalances ∆n and by the inter-layer dielectric constant εGG. The total screened field Etot induces an
inter-layer potential difference ∆V . (d) LL energy spectra of upper and lower graphene layers (red and blue lines respectively)
as a function of inter-layer potential difference ∆V . LL crossings are indicated by black dots. NU(L) is the LL index of the
upper (lower) layer. (e) Simulated density of states for twisted bilayer as a function of νtot and ∆V . (f) Measured longitudinal
resistance R′xx with background subtracted, as a function of D and νtot at B = 4T. Peaks in R′xx cross as a function of D,
indicating the crossing of LLs. Black dots are theoretical fits to the LL crossings, from which the interlayer capacitance is
extracted.

top (bottom) gate, VTG(BG) is the potential difference
between the top (bottom) gate and the graphene layer
closest to it [17], and e is the elementary charge. The
applied displacement field is D = (CTVTG − CBVBG)/2,
which induces charge and voltage differences between the
layers.

We first compare our twisted bilayer samples with AB-
BLG by measuring the resistance of the charge neutrality
point (CNP) as a function of D. In AB-BLG, a dis-
placement field breaks the bilayer’s inversion symmetry,
which opens a band gap at the CNP [18–20]. This is
not predicted to occur in twisted bilayers [6], and in our
samples the CNP resistance decreases almost linearly as
D increases (Fig. 1d). This is a strong indication that
our bilayers are not AB-stacked. Instead, the effect of D
at the CNP can be explained as doping the two layers
with equal and opposite charge, reducing the resistance
of each individual layer [17].

At high magnetic field B, we measure a QHE which is
distinctly different from that observed in MLG [21, 22]
or AB-BLG [23]. At D = 0, we measure the Hall re-
sistance Rxy as a function of total filling factor νtot =

ntoth/eB, where h is Planck’s constant (Fig. 2b, black
line). We observe plateaus following the progression
1/Rxy = ν(e2/h), where ν = 4, 12, 20. These steps of
8e2/h between each plateau of 1/Rxy indicate the pres-
ence of 8-fold degenerate Landau levels (LLs). This 8-fold
degeneracy follows from the usual spin (↑,↓) and valley
(K,K ′) degeneracies found in MLG [21, 22], with an ad-
ditional 2-fold degeneracy which we ascribe to the layer
degree of freedom (U,L for upper and lower layer respec-
tively)(Fig. 2a) [24].

This layer degeneracy at D = 0 was observed in three
different samples, and can be seen up to high filling
factors in the longitudinal resistance as well. Fig. 2f
shows longitudinal resistance measurements R′xx, where
a smooth background has been subtracted to improve the
contrast of magnetoresistance peaks [17]. When D = 0,
peaks in R′xx are separated by ∆νtot = 8, again indicat-
ing 8-fold degenerate LLs, with this trend verified as far
as νtot = −72.

A property of the twisted bilayers is that the layer de-
generacy can be easily broken by applying a displacement
field normal to the graphene layers, resulting in 4-fold de-
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generate LLs, which we observe as new steps of 4e2/h in
1/Rxy (Fig. 2b, purple line). These LL splittings are also
seen clearly in R′xx, where each peak in R′xx at D = 0
splits in two for |D| > 0 (Fig. 2f). As D is increased fur-
ther, these peaks cross with their neighbors, indicating
the crossing of LLs between the layers.

To model the pattern of possible LL crossings, we con-
sider independent MLG LL energy spectra in each layer
with a potential difference ∆V between the upper and
lower layer induced by D (Fig. 2d). The upper and lower
layer LLs (red and blue lines respectively), are degener-
ate at ∆V = 0, and split in energy as |∆V | increases,
resulting in energy crossings when −e∆V is equal to
the energy spacing between two MLG LLs. This con-
dition is satisfied when −e∆V = ELL(NU) − ELL(NL),
where ELL(N) = sgn(N)vF

√
2e~B|N |, NU and NL are

the LL indices for the upper and lower layer respectively,
and vF is the MLG Fermi velocity [5]. This energy
plot is converted to filling factor by modeling each LL
by a Lorentzian density of states with disorder broad-
ening (Fig. 2e). The resulting plot of two intersecting
LL spectra qualitatively reproduces all the peaks in R′xx
presented in Fig. 2f.

The relationship between the applied D and the in-
duced ∆V at a crossing is determined by the inter-layer
screening properties of the twisted bilayer, as D will be
screened both by free charges and the inter-layer dielec-
tric environment (Fig. 2c). The total screened electric
field Etot between the two graphene sheets with spacing
dGG results in the potential difference −∆V = Etot ·dGG.
The relation then is:

−∆V =

(
D − e∆n

2

)
dGG

εGG
= (D − ε0ES)

1

CGG
, (1)

where ES is the screening field due to the layer density
imbalance ∆n, εGG is the inter-layer dielectric constant,
and CGG = εGG/dGG is the inter-layer capacitance per
unit area.

For a high density of states material, ∆V would be ef-
fectively zero and the charge imbalance ∆n would com-
pletely screen D, independent of the inter-layer capac-
itance CGG. Graphene though, has a small density of
states, and a correspondingly small quantum capacitance
which is comparable to the inter-layer capacitance of the
closely-spaced graphene sheets. This leads to an incom-
plete charge screening of D and a dependence of ∆n on
CGG which we can measure. When the Fermi energy lies
at a LL crossing with LL indices NU and NL, we can de-
termine both ∆V and ∆n (∆n = (NU−NL)4eB/h) and
use equation (1) to compute the D at which a crossing
should be observed. We repeat this process for each cross-
ing, and fit it to our data to extract CGG. The computed
crossings are overlaid as black circles on Fig. 2f, resulting
in good agreement when CGG = 6.8 µF/cm2 (estimated
error ±1.0 µF/cm2). A similar analysis was repeated on

two other samples with LL crossings, both resulting in an
extracted capacitance of CGG = 7.5 ± 1.0 µF/cm2. For
comparison, the capacitance of two parallel plates sepa-
rated by 0.34 nm of vacuum would be 2.6 µF/cm2, which
is less than half of our extracted capacitances (atomic
force microscopy measurements indicate an inter-layer
step height that varies from 0.34 to 0.41nm across our
samples). Given that the inter-layer distances are only
somewhat larger than the spatial extent of the graphene
pz orbitals [25], it seems likely that both the finite thick-
ness of the graphene layer, and its polarizability [26],
could increase the inter-layer capacitance. A similar mag-
nitude of screening also occurs in AB-BLG [27, 28]. An-
other possible effect is Fermi velocity reduction, which
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FIG. 3. Insulating states in twisted bilayer at νtot = 0. (a)
Longitudinal resistivity ρxx as a function of D and νtot at
B=9T. At νtot = 0, two insulating regimes are observed, one
at D = 0 and another at high D, with a low ρxx region sep-
arating them. (b) Temperature dependence at B=9T and
νtot = 0 of ρxx vs D shows non-metallic behavior. Temper-
ature increases going from the top light blue curve to bot-
tom red curve as 0.3, 1, 4, 8, 10, and 12K, respectively. (c)
Magnetic field dependence of νtot = 0 insulating states. Re-
sistivity double minima approach each other with slope 7.5
mV/nmT (dashed red lines). Both insulating states disap-
pear at low B. (d) Schematic of νtot = 0 edge states at
nonzero ∆V when D is applied. The zeroth LLs are split
apart, resulting in counter-propagating edge states in the ab-
sence of interactions (intersecting solid lines). The insulating
state at high D indicates inter-layer coupling between these
edge states, which may open a gap at the edge (dashed lines).
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has been demonstrated to occur in twisted bilayers at
small twist angles [6, 11, 12, 29]. In this case, since we
assume vF to be the same as in isolated MLG, the inter-
layer capacitance could be even larger than we estimate
and our extracted capacitance CGG sets a lower-bound
on this quantity.

We now turn to the νtot = 0 region, where we see evi-
dence of coupling between edge states in the two layers.
At high B-field and νtot = 0, the longitudinal resistiv-
ity ρxx has two insulating regions: one at D = 0 and
one at high D (Fig. 3a). Both insulating states have
high resistivities (> 100 kΩ) with a non-metallic temper-
ature dependence (Fig. 3b). A similar pattern of insu-
lating states has been observed in AB-BLG [13, 14], but
the mechanism for such states must be different in the
twisted bilayers. In AB-BLG, high D opens a band gap
independent of B. Such an effect does not occur in the
twisted bilayers (Fig. 1d) [6], and as seen in Fig. 3c, the
high D insulating state disappears at low B field.

This high D insulating state can be explained by the
coupling of counter-propagating edge states, which can
co-exist on the same edge of the twisted-bilayer sample
when νtot = 0. These crossings occur when |D| > 0, be-
cause the zeroth LL in graphene is made up of opposite
chirality states with energy that diverges in opposite di-
rections at the edge of the sample (Fig. 3d). When the ze-
roth LL of the twisted bilayer is split in energy by D, the
electron-like edge states in one layer (blue line) will cross
the hole-like edge states in the other (red line), resulting
in counter-propagating, layer-polarized edge modes. A
similar scenario has been previously considered for spin-
splitting in the zeroth LL in graphene, leading to spin
currents [30]. In the case of twisted bilayer though, there
should be a displacement-induced layer splitting of the
zeroth LL, with associated “layer” current. Because the
states counter-propagate along the same edge though, a
backscattering channel is available by tunneling into the
other layer. Such a process could lead to 1d localiza-
tion [31], or an insulating gap due to an avoided crossing
of the edges states (Fig. 3d, dotted lines), both of which
could explain the insulating behavior we observe.

The high D insulating state at νtot = 0 is separated
by a low resistivity region from another insulating state
at D = 0. The development of an insulating state at
zero filling factor has been observed in MLG [32] and
BLG [13, 33], and is attributed to electron-electron inter-
action effects which break the degeneracy of the zeroth
Landau level and open a gap at zero density. Given the
presence of the low resistivity transition region between
the two insulating states, it is unlikely then that both
the high D and D = 0 regions are layer-polarized states,
since that would imply a continuous transition from one
state to the other. The D = 0 state then could simply
be both MLG sheets within some broken-symmetry state
that does not involve the layer degree of freedom [34]. As
D increases, the layer-polarized state eventually becomes

more energetically favorable, leading to the transition to
the high D insulating state.

These νtot = 0 states indicate that layer interactions
in the twisted bilayer graphene can lead to new behav-
iors which cannot be explained by completely indepen-
dent monolayer graphene sheets conducting in parallel.
In principle, this inter-layer coupling is tunable by vary-
ing the distance between the graphene layers, altering the
twist angle, as well as by threading magnetic flux parallel
to the layers.
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