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We study three- and four-body Efimov physics in a heteronuclear atomic system with three
identical heavy bosonic atoms and one light atom. We show that exchange of the light atom
between the heavy atoms leads to both three- and four-body features in the low-energy inelastic
rate constants that trace to the Efimov effect. Further, the effective interaction generated by this
exchange can provide an additional mechanism for control in ultracold experiments. Finally, we find
that there is no true four-body Efimov effect — that is, no infinite number of four-body states in
the absence of two- and three-body bound states — resolving a decades-long controversy.

PACS numbers:

Few-body physics has benefitted greatly from ultracold
experiments on quantum gases in recent years. Many
long-standing predictions have been verified and new
phenomena identified due to the extraordinary ability to
control and measure these systems. One of the more
spectacular results for few-body physics was the obser-
vation of Efimov physics in Cs [1], experimentally vali-
dating Efimov’s surprising, 35-year old prediction [2] by
confirming its predicted influence on three-body recom-
bination [3]. Several measurements of Efimov physics
have now been made [1, 4–13] and even include features
traceable via theory [14] to four-body processes [10, 15].

One natural question to ask is whether there is an
Efimov effect for N>3 bodies. The Efimov effect in
this case is defined as the existence of an infinite num-
ber of N -body bound states when no subsystems are
bound [16, 19]. Part of the answer was provided in
Ref. [16]: there is no Efimov effect for N>3 equal mass

particles. While generally interpreted to imply no Efi-
mov effect is possible for N>3 (see, for example, [17]),
this result does not preclude the possibility of an Efimov
effect for systems with unequal masses. In fact, Ref. [18]
recently reported that three identical fermions interact-
ing resonantly with a fourth particle do have an Efimov
effect for a small range of mass ratios. The question of an
Efimov effect for N=4 with three identical bosons, how-
ever, remains open despite prior study: H3L systems (H
and L are heavy and light particles, respectively) were
analyzed in Ref. [19] with the conclusion that no Efimov
effect occurs. When this system was revisited in Ref. [20],
however, the opposite conclusion was reached.

In this Letter, we settle this controversy: there is no
true four-body Efimov effect for H3L with bosonic Hs.
Although our conclusion is in agreement with Ref. [19],
our reasoning is very different. We have, however, iden-
tified one universal four-body state [14, 24–26] attached
to each three-body Efimov state. We also show that the
low-energy scattering observables simultaneously display
distinct three- and four-body features characteristic of
the three-body Efimov effect. Moreover, we find that, in
the context of ultracold collisions, the s-wave two-body

scattering length aHL between H and L atoms can be
used to tune the effective heavy-heavy scattering length
a∗HH when aHL > 0, opening up new avenues for control
in few-body systems.
Since an exact solution of the four-body prob-

lem remains a substantial challenge, we apply the
Born-Oppenheimer (BO) approximation as described in
Refs. [19, 20], assuming that the mass m of L is much
less than the mass M of H . Besides the practical ben-
efit of reducing the four-body problem to a three-body
problem, the BO approximation provides a useful con-
ceptual framework and allows us to directly comment on
the analysis in Refs. [19, 20]. Although we will focus on
bosonic Hs, our analysis can be generalized straightfor-
wardly.
We first recall that the three-body Efimov effect occurs

when at least two scattering lengths are much larger than
a characteristic two-body interaction range r0 [2] even in
the heteronuclear case [37, 38]. Thus, for H2L, Efimov
physics will occur for |aHL|≫r0. Applying the BO ap-
proximation with ρ theH+H distance yields a BO poten-
tial with the universal long-range behavior −χ2

0~
2/2mρ2,

χ0≈0.567143, in the region r0≪ρ≪|aHL| [17, 21]. The
three-body problem has thus been reduced to an effec-
tive two-body problem with scattering length a∗HH . In
the limit |aHL|→∞, the Efimov region of this potential
extends to infinity and supports an infinite number of
Efimov states with the characteristic geometric relation
between bound state energies [2]

En+1/En = e−2π/s0 , n = 0, 1, 2, ... (1)

where s20=χ2
0M/2m− 1/4.

Similarly, all of the universal results [17] for low-energy
three-body scattering apply to H2L. For instance, when
aHL>0, there is a weakly bound HL molecule, and a∗HH

is the atom-diatom H+HL scattering length [17],

a∗HH ∝ cot[s0 ln(aHL/r0) + Φ]aHL. (2)

The poles in a∗HH occur at those values of aHL when an
Efimov state becomes bound, so their positions are char-
acteristically log-periodic in aHL. Their overall position,
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however, is determined by the short-range three-body
phase Φ [3, 22, 39]. Equation (2) thus shows that aHL

provides a control over a∗HH that could prove advanta-
geous when a∗HH cannot easily be controlled directly via,
for example, a Feshbach resonance [23].
In general, the Hs also interact directly. However, so

long as the direct H+H interaction is short-ranged —
even if it is repulsive — the large-ρ behavior of the ef-
fective H+H interaction is unchanged, and the Efimov
effect remains. A direct H+H interaction changes only
E0 (or, equivalently, Φ) and not the characteristic log-
periodic behavior. Consequently, manipulating the di-
rect H+H interaction allows control of Φ and thus the
position of the family of log-periodic Efimov features.
Applying the BO approximation to H3L reduces it to

an effective three-body problem for H3. We thus expect
that our knowledge of Efimov physics and universality for
three identical bosons should apply and provide at least a
basic understanding of the system [19, 20]. For simplicity,
we assume that the H atoms do not interact directly. Per
the argument above, this assumption will not materially
affect our conclusions. The H+H interaction then comes
solely from mediation by the L and is characterized by
the effective H+H scattering length a∗HH . Based on the
result for three bosons, we expect an Efimov effect for
H3 when |a∗HH |→∞ [20].
To determine whether the |a∗HH |→∞ limit actually

produces an Efimov effect for H3L, we adopt the fol-
lowing definition [16, 19]: a true four-body Efimov ef-
fect exists if the four-body system possesses an infin-
ity of stable bound states when there is a zero-energy
three-body bound state and no other two- or three-body
bound states. Under these conditions, the four-body Efi-
mov effect is completely independent of any three-body
Efimov effect, making the resulting states fundamentally
different from the universal four-body states discussed in
Refs. [14, 24–26].
If it exists, a true four-body H3L Efimov effect will

occur for |a∗HH |→∞ and aHL<0. This case gives a zero-
energy H2L bound state but no HL bound state and
is precisely the case identified in Ref. [19]. They con-
cluded that no Efimov effect is possible because the BO
potential surface has no long-range component. Naus
and Tjon [20] correctly pointed out that it is not the BO
potential surface that must behave as −R−2, but rather
the adiabatic hyperspherical potential where the hyper-
radius R measures the overall size of the system (see, for
example, Refs. [27, 28] for a discussion of hyperspherical
coordinates in this context). They concluded that be-
cause |a∗HH |→∞, the conditions of the Efimov effect for
H3 are fulfilled and there is thus a four-body Efimov ef-
fect. Unfortunately, neither analysis provides a definitive
answer.
Although otherwise sound, the argument of Ref. [20]

is limited by its reliance on the BO approximation —
a problem they identified but did not address. The is-
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FIG. 1: Schematic energy spectrum for H3L. Solid lines
denote bound states and dashed lines denote resonances.

sue with the BO approximation is that for aHL<0, L
becomes unbound when ρ&|aHL| [19], and its spectrum
becomes continuous. Since a zero-energy L is no longer
fast compared to the Hs, the BO approximation breaks
down. Naus and Tjon dealt with this issue by follow-
ing Ref. [19] and simply set the BO potential to zero for
ρ&|aHL|. Under this questionable approximation, a∗HH

can be defined and adjusted to infinity, so that they con-
clude there is an infinite series of bound H3L states, i.e.
the four-body Efimov effect.

Where the BO approximation fails, however, the adi-
abatic hyperspherical approximation is perfectly valid,
retaining a discrete spectrum for all R. In particular, the
lowest H2L adiabatic hyperspherical potential coincides
with the BO potential for R.|aHL| and crosses zero en-
ergy at R∼|aHL| much like the BO potential [30]. For
larger R, the potential increases to a barrier [29] then
falls to zero as leff(leff+1)~2/MR2 with leff=3/2 [30, 31].

Having taken care to define the H2L hyperradius R
such that it reduces to the H+H distance ρ in the
M/m→∞ limit, we can regard this adiabatic hyperspher-
ical potential as an effective H+H interaction. The
leff=3/2, non-s-wave character of this potential, how-
ever, prevents the scattering length a∗HH from even being
defined. Consequently, in a dramatic breakdown of the
BO approximation, there is no Efimov effect. This con-
clusion has been confirmed by direct calculation of the
four-body adiabatic hyperspherical potentials for H3L
with M/m=30 [32] using the correlated Gaussian ap-
proach [33].

Even though our finding no true four-body Efimov ef-
fect agrees with the conclusions of Ref. [19] and contra-
dicts the conclusions of Ref. [20], we believe the former
were right for the wrong reason and the latter underes-
timated the consequences of the breakdown of the BO
approximation. In the end, it is this breakdown that ex-
cludes the possibility of a true four-body Efimov effect in
this system.
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The possibility of true four-body Efimov states is not
the only phenomenon of interest in H3L. Continuing to
aHL>0 such that aHL≫r0, including aHL→∞, the BO
approximation displays no pathologies since L is bound
for all H configurations, and we can safely think about
the three-body H3 motion on the lowest BO potential
surface, which we take from Ref. [19]. Based on the
known three-body results [17, 27, 34], we expect an adi-
abatic hyperspherical potential of the form

W0 = −g20 + 1/4

2µR2
~
2, aHL ≪ R ≪ |a∗HH |, (3)

with g0=1.00624 and µ=M/
√
3 that approaches the

three-body break-up threshold. In this case, that thresh-
old corresponds physically toHL+H+H . The lower limit
of R in Eq. (3) is modified from the usual three-body
problem [34] due to the fact that the characteristic range
of the effective two-body H+H potential is no longer r0,
but rather aHL as defined by the size of the HL bound
state.

When aHL is tuned to give a∗HH→∞, the Efimov poten-
tial (3) extends to infinity, producing an infinite series of
four-body bound states below the HL+H+H threshold
with binding energies En+1/En=e−2π/g0 . These states
are not true four-body Efimov states since there is an
HL bound state, but they can be regarded as three-
body Efimov states of HL+H+H much like the homonu-
clear equivalents discussed in Ref. [14, 17, 33]. They
are indicated with the notation (HL)H2 in Fig. 1 where
the H2L+H and HL+H+H thresholds intersect since
a∗HH→∞ at these points.

Figure 1 sketches the energy trajectories for H3L as
a function of aHL. In addition to the (HL)H2 Efimov
states, there are the H2L Efimov states, and associated
with each of the universal (highly excited) H2L states
we find — for both M/m=50 and M/m=30 — one H3L
state that appears to be the analog of the universal four-
boson states in Refs. [14, 15, 24–26]. We find that its
binding energy within our BO treatment is universally
related to the binding energy of the associated H2L Efi-
mov state by EH3L/EH2L≈0.4 for both of the mass ra-
tios we have calculated. Note that the binding energies
are defined relative to the next lowest breakup threshold
(HL+H+H for H2L states and H2L+H for H3L states).

Figure 2 shows our numerically calculated three-body
recombination rates K3 for HL+H+H→H2L+H with
M/m=30 (see Ref. [28] for details of our numerical meth-
ods). Although there may be several final H2L Efimov
states available, our calculation shows that recombina-
tion into the most weakly bound Efimov state dominates.
In fact, the main peaks in Fig. 2(c) occur where an H2L
Efimov state just becomes bound. The separation be-
tween the main peaks is thus determined by s0 from the

H2L Efimov effect: for M/m=30, a
(2)
HL/a

(1)
HL=eπ/s0=4.34.

Note that the adiabatic hyperspherical approach gives
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FIG. 2: K3 for HL+H+H→H2L+H when M/m=30. The
main peaks in (c) reflect the Efimov physics of H2L and occur
where (d) a∗

HH diverges. The expanded plots (a) and (b) high-
light the features on each main peak related to H3L states.
The vertical dashed lines indicate where a∗

HH=∞.

eπ/s0=3.96 [34, 35], giving an indication of the BO ap-
proximation error for this mass ratio. For consistency, we
will quote only BO results in the rest of this Letter. The
factor of 5.5 between these two main peaks in Fig. 2 does
not match this prediction because the criterion aHL≫r0
is not well satisfied.
Since each main peak corresponds to a pole of a∗HH ,

K3 shows Efimov features characteristic of the H3 mo-
tion where |a∗HH |≫aHL. When this condition is satisfied,
the rates are given by the usual universal three-body ex-
pressions [17, 36] with the short-range length scale set to
aHL

K
(a∗

HH
<0)

3 =
C′

µ

sinh(2η) |a∗HH |4
sin2[g0 ln(|a∗HH |/aHL)+Φ′]+sinh2(η)

K
(a∗

HH
>0)

3 =
C

µ
sin2[g0 ln(a

∗
HH/aHL) + Φ] (a∗HH)4. (4)

In these expressions, C and C′ are universal constants.
But, because the final H2L state is an Efimov state, Φ, Φ′

and η depend not on short-range four-body physics, but
rather on the short-range physics of the H2L states —
no additional four-body parameter is needed [14, 24, 25].
The a∗HH -K3 projection in Fig. 3 supports this conclu-
sion, showing that the Efimov features related to the H3

motion described by Eq. (4) are approaching universal
values of a∗HH/aHL in the limit aHL≫r0.
Interestingly, for larger mass ratios, H2L Efimov states

with non-zero orbital angular momentum j are possi-
ble [34, 35]. In this case, the universal constant s0 in
Eq. (1) is determined from s20=χ2

0M/2m−j(j+1)−1/4,
and there will be an Efimov effect for H2L so long as
s20>0. Higher angular momentum Efimov states have
not yet been observed because experiments have focused
mostly on identical particles which have no such states
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FIG. 3: K3 for HL+H+H→H2L+H with M/m=50 simul-
taneously showing the dependence on aHL and on a∗

HH . The
H2L Efimov physics is highlighted by the aHL-K3 projection
while the a∗

HH-K3 projection illustrates the (HL)H2 Efimov
physics.

and because j>0 Efimov states produce extremely nar-
row recombination peaks as seen in Fig. 3. The mass
ratio in Fig. 3, M/m=50, supports j=2 Efimov states,
but is not sufficient for higher j states. Because leff=j 6=0
for the H2L system, there is no (HL)H2 Efimov effect as-
sociated with these states. Their narrow K3 peaks thus
show no substructure of the sort seen on the main peaks.

The periods for each of the three different families of
Efimov peaks are indicated in Fig. 3. Because none of the
respective scattering lengths are strongly in the univer-
sal limit, however, the calculated periods do not match
the predicted ones. The main j=0 H2L Efimov peaks
highlighted by the aHL-K3 projection should have a pe-
riod of eπ/s0=3.08. The calculated spacings are larger
than this, but appear to be approaching the expected
value as aHL increases. Similarly, for j=2, the expected
period is 10.46 while the calculated one is 17.5, and the
predicted period of the (HL)H2 Efimov substructure on
the main peaks highlighted in the a∗HH -K3 projection is
eπ/g0=22.7. The magnitude of the deviations from the
predictions likely reflects what can be observed since it
is difficult to penetrate deeply into the universal regime
experimentally.

So far, we have not taken advantage of all of the free-
dom that this heteronuclear system affords to manipulate
the Efimov features. In particular, since a∗HH depends
only on the total H+H interaction, i.e. effective plus di-
rect interactions, it can be tuned by either interaction —
or both. Intriguingly, this freedom also allows experimen-
tal control of both a∗HH and Φ (or Φ′). Controlling the
former via either aHL or a direct interaction with scatter-
ing length aHH allows the various Efimov features seen,
for instance, in Figs. 2 and 3 to be mapped out. Con-
trolling the latter makes it possible to shift all of these
features — something not possible so far in three-body
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systems. Moreover, in the neighborhood of a pole in a∗HH ,
it should be possible to exert both types of control largely
independently.
To illustrate the effect of tuning the direct interaction,

we show in Fig. 4 the numerically calculated rates for
the relaxation process H2L(n)+H→H2L(n− 1)+H as a
function of aHH where n labels the most weakly bound
H2L state. This tuning was accomplished by including
a short-range, direct H+H interaction in addition to an
effective H+H interaction. The behavior of Vrel in Fig. 4
is also found in the three-boson system. In fact, when
a∗HH ≫ aHL > 0, Vrel has the same form as in three-
boson systems [17]

V
(a∗

HH
>0)

rel =
A sinh 2η

sin2[g0ln(a∗HH/aHL)+Φ]+sinh2η
a∗HH , (5)

where A is a universal constant, but η and Φ depend on
the short-range details of the relaxed H2L bound state
— although not on a separate four-body parameter.
To conclude, we have studied Efimov physics in the

four-body heteronuclear system H3L with bosonic H
atoms, showing that there is no true four-body Efimov
effect. We have, however, identified a universal four-
body state linked to each H2L Efimov state. Perhaps
more significantly, we have shown that the richness of
the heteronuclear system can be exploited to reveal a va-
riety of Efimov features with different universal scaling
by scanning just aHL. That same richness allows more
opportunities for controlling the system as well, which
is potentially very important for experiments seeking to
study or utilize these processes. For instance, taking ad-
vantage of the BO approach introduced in Ref. [19], we
pointed out that scanning aHL gives a means for control-
ling the scattering length between the heavy atoms — a
tool that could prove useful experimentally. Heteronu-
clear four-body and larger systems thus provide consid-
erable possibilities for studying Efimov physics that were
not previously anticipated.
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