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Intrinsic stability of a body hovering in an oscillating airflow
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We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object
hovering in a vertically oscillating airflow. Such a flyer not only generates sufficient aerodynamic
force to keep aloft but also robustly maintains balance during free flight. Flow visualization reveals
that both weight support and orientational stability result from the periodic shedding of vortices.
We explain these findings with a model of the flight dynamics, predict increasing stability for higher
center-of-mass, and verify this counterintuitive fact by comparing top- and bottom-heavy flyers.

While airplane flight relies on the force generated by a
steadily translating airfoil, insect flight is driven by flap-
ping wing motions. This unsteady flow-structure inter-
action offers mechanisms of force generation that are not
described by fixed-wing aerodynamics [1–4]. Experimen-
tal [5–7] and theoretical [8–11] studies have revealed the
importance of vortices as a signature of unsteady mech-
anisms. For example, the attachment of a leading-edge
vortex enhances lift on the wings of some insects [5, 6],
and vortex shedding indicates force production in others
[9]. The role of unsteady effects in flapping flight sta-
bility is less explored. Insects certainly employ active
feedback control during flight [12, 13], although it is un-
clear if such systems are indispensable. Some simulations
of insect flight indicate that body orientation is intrinsi-
cally unstable [14, 15] while others predict neutral sta-
bility [16] and even passive stability [17]. Unfortunately,
experiments that directly assess the intrinsic stability of
insects are difficult or perhaps impossible to perform.

As an alternative approach, we consider an inanimate
flyer that shares important features with its biological
counterpart but is amenable to a rigorous stability analy-
sis. Our model flapping flight system consists of upward-
pointing pyramid-shaped objects, or ‘bugs’, made to
hover in a vertically oscillating column of air [18, 19].
Tethered flight experiments have shown that the interac-
tion between this asymmetric shape and reciprocal flow
results in an upward force capable of supporting body
weight [19]. Qualitatively, the force can be understood in
terms of differential drag, with the upward flow inducing
greater drag than the downward flow. Quantitatively,
however, the force produced defies such an accounting
by quasi-steady aerodynamics, and thus unsteady flow
effects are critical to force generation. In this work, we
observe the unrestricted hovering of such bugs, thus en-
abling a direct assessment of free flight stability. In ad-
dition, we use flow visualization to reveal the importance
of unsteady aerodynamic effects in both force generation
and flight stabilization. The mechanisms discerned here
are in principle available in other modes of flapping flight.

Our system consists of a low-frequency loudspeaker
(‘subwoofer’) that is directed upwards, capped, and fit-
ted with a clear test section of 15 cm in both diameter
and height. The speaker is driven with a signal generator

and amplifier to produce a sinusoidal vertical airflow of
tunable frequency and amplitude, typically f = 10 − 50
Hz and A = 1 − 5 cm (peak-to-peak). Previous work
has shown that this chamber produces high-quality lam-
inar flow [18, 19]. We examine the free flight of hollow
pyramid-shaped bugs of height L = 1 − 5 cm and mass
0.1-0.5 g constructed from either letter paper or tissue
paper with carbon fiber supports. The Reynolds number
is typically Re = fAL/ν ∼ 103, where ν = 1.5 × 10−5

m2/s is the kinematic viscosity of air.

For sufficiently high frequency and amplitude, a bug
hovers with its apex pointing up and also displays re-
markably robust stability. In Fig. 1(a), we overlay snap-
shots captured from high-speed video of a bug in hov-
ering flight. While aloft, it is often tilted to the side
but quickly recovers the upright orientation. Flight can
last as long as thousands of oscillation periods, eventu-
ally ending in a collision with the chamber walls. From
many videos, we extract the pyramid’s tilt angle θ, and
sample trajectories are shown in Fig. 1(b). The angle
is defined with respect to the vertical and thus is always
non-negative with θ = 0 corresponding to the upright
orientation. The pyramid occasionally experiences large
excursions, θ > 30 degrees, but reliably recovers. Our ob-
servation of such long-lived flight for pyramids and also
cones of various opening angles and sizes suggests that
body orientation is generically stable.

To quantify these observations, we formulate an aero-
dynamic potential that describes the bug’s orientational
stability. From measurements of θ, we determine the an-
gular acceleration and thus the net torque Γ ∝ θ̈ on the
body. Because the gravitational force acts through the
center-of-mass and thus generates no torque, Γ reflects

only aerodynamic effects. Using V (θ) = −

∫ θ

0
Γ(θ′)dθ′,

we determine the potential from 16 videos, as shown by
the gray points in Fig. 1(c). For small angles, this po-
tential is essentially flat and thus corresponds to near
neutral stability. It rises sharply for larger angles, how-
ever, revealing that the bug hovers in a potential well
that resists excursions to large angles.

To elucidate the fluid mechanical basis of this stabil-
ity, we investigate an analogous two-dimensional system.
A Λ-shaped body is fixed in a pan containing a shallow
(2 cm) layer of water, and a motor tilts the pan back-
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and-forth about a pivot to produce an oscillating flow.
The body size of 3 cm and flow period of 1 s ensure that
Re ∼ 103. A shadowgraph technique is used to visualize
the deformations of the fluid surface, revealing flows of
strong vorticity [20]. When upright, each side of the body
sheds a vortex dipole once per oscillation. As shown in
Fig. 2(a), the outer vortex of each pair is formed as the
upward flow curls around the body, and the inner vor-
tex forms during the downward flow. The two counter-
rotating vortices then shed as a pair, forming a strong
downwash [Fig. 2(b)]. This downward transport of fluid
momentum is associated with an upward reaction force
on the body itself [21]. Similarly, for a three-dimensional
pyramid, we expect that counter-rotating vortex tubes
first envelope the base and are then ejected downward.

When the Λ-shaped body is tilted, a strong asymmetry
appears in the surrounding flow field. As shown in Fig.
2(c) and (d) for a rightward tilt, a downward-moving
vortex dipole is again produced on the right side of the
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FIG. 1: Stable hovering of a pyramid in an oscillating airflow.
(a) Snapshots from high-speed video of free flight of a paper
pyramid (mass 0.22 g and height L = 3.2 cm). The flow
oscillates up-and-down with peak-to-peak amplitude A = 1.9
cm and frequency f = 20 Hz (period T = 0.05 s). (b) Typical
traces of the body tilt angle θ, which is measured from the
vertical. (c) An aerodynamic potential is reconstructed from
the tilt dynamics of 16 movies (gray points), and data for
θ ≥ 0 is reflected about the vertical to reveal a stable potential
well (dashed line).
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FIG. 2: Vortex ejection for a Λ-shaped body in an oscillating
flow. A water-filled pan is rocked back-and-forth, and flow
structures are visualized with shadowgraphs. (a) Snapshots
of the flow around an upright Λ. A vortex curls around each
side of the body as the flow moves upwards (t = 0), a counter-
rotating vortex then forms on the downward flow, and the pair
are shed downward (t = T/2). (b) Schematic of the flow field
for an upright body. (c) and (d) When tilted rightward, the
left side emits a pair outward and nearly perpendicular to the
body axis (t = 0), and the right side of the body emits a
weaker vortex pair downward (t = T/2).

body, but the dipole produced on the left side is ejected
sideways. In this case, the leftward transport of fluid
momentum corresponds to a rightward force. Because
the line-of-action of this force is below the center-of-mass,
it produces a torque that tends to restore the body to the
upright orientation. Indeed, if free to rotate, the body
tends to align with the flow.
These flow observations inspire a two-dimensional

model in which the average fluid forces act at the sites
of vortex emission. Further, to employ symmetry argu-
ments, we idealize the Λ-shape as an equilateral triangle
with all three sides closed to the flow. First, we consider
forces on the left side of the body, which is made to pro-
trude into the flow under a rightward rotation, as shown
in Fig. 3(a). When upright, the force points upward and
supports half of the body weight. For θ = 60 degrees, the
configuration is the up-down mirror-symmetric partner
of θ = 0 and thus the force must now point downward.
Thus, as θ sweeps from 0 to 60 degrees, the force vec-
tor sweeps from 0 to 180 degrees. This suggests that for
intermediate values of θ the angle of the force vector is
about three times the body tilt, as is consistent with the
strong re-direction of vortex emission seen in experiments
[Fig. 2(c) and (d)]. Assuming a constant force magnitude
leads to the entire sequence given in Fig. 3(a).
We use similar arguments for the force on the right

side of the body, as shown by the sequence of Fig. 3(b).
For a tilted body, flow visualization reveals that weaker
vortices are shed downward [Fig. 2(c) and (d)]. Thus,
for θ < 30, we assume the force vector remains pointing
upward but its strength decreases linearly in θ. For tilts
30 < θ < 60, symmetry requires that the force vector now
act on the upper corner, point downward, and increase
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FIG. 3: A point-force model of stability. Time-averaged aero-
dynamic forces (dark arrows) on a triangular body are as-
sumed to act at the sites of vortex emission. (a) As the body
tilts, the force vector on the left side maintains constant mag-
nitude, and its angle is three times the tilt angle θ. (b) The
force on the right points upward and decreases in strength
as θ increases to 30 degrees. Similarly, it is directed down-
ward and grows in strength for 30 < θ < 60. (c) Potential
for the nominal case in which the center-of-mass is midway
between the apex and base, as well as for top-heavy (dashed)
and bottom-heavy (dotted) arrangements.

in strength for larger tilts.
With the specification of the center-of-mass (CoM) lo-

cation, the model is complete and contains no adjustable
parameters. For the nominal case of a Λ-shape – with
mass on the two sides but not on the bottom – the CoM
is located halfway between its apex and base. For all
angles θ, we sum the torques about this CoM and inte-
grate the net torque to form the potential. As shown in
Fig. 3(c), this theoretical potential is surprisingly similar
to that measured for a three-dimensional pyramid [Fig.
1(c)]. The model accounts for the passive stability and
captures such features as the rapid increase in the po-
tential for θ > 30 degrees and even the slight negative
stability near θ = 0.
In addition, the model indicates that intrinsic stability

depends on being top-heavy. In particular, if the CoM
is located higher, say at the apex, the potential walls
become tighter and steeper, further increasing stability
[dashed line of Fig 3(c)]. If, on the other hand, the CoM
is lowered to the base of the body, flight becomes un-
stable, as shown by the dotted potential of Fig. 3(c).
This prediction of increasing stability for top-heavy bod-
ies defies conventional wisdom but can be rationalized by
considering the force diagrams of Fig. 3(a): the inward

FIG. 4: Center-of-mass (CoM) location and flight stability.
Weights are added to the pyramid to make top- and bottom-
heavy bodies. The pyramid height is 1.7 cm in both cases,
and the CoM is located at the apex and 1.5 cm below the
base, respectively. The objects are released into the flow with
tilt θ = 30 degrees. (a) and (b) A top-heavy pyramid recovers
the upright orientation, while a bottom-heavy body tips over.
(c) Body tilt dynamics for top- and bottom-heavy pyramids.

force leads to a restorative torque only if the body’s CoM
is located above the line-of-action.

To test this prediction, we compare the flight of top-
and bottom-heavy pyramids. The CoM is shifted by at-
taching a metal weight to a thin rod that runs through
the axis of the body. These bugs are then released into
the flow from a tilted initial orientation, and the resulting
dynamics offer a clear view of the stability characteris-
tics. Top-heavy bugs consistently return to the upright
orientation when released, as exemplified by the snap-
shots of Fig. 4(a). In Fig, 4(c), we plot in black the
time-course of the tilt angle for many such trials and
find that the body orientation experiences decaying os-
cillations. Bottom-heavy bugs, on the other hand, often
flip over when released, as shown in Fig. 4(b). The as-
sociated trajectories show a divergence toward large tilt
angles [gray curves of Fig. 4(c)], and thus balance is lost
by lowering the CoM.

These findings show how unsteady aerodynamics and
CoM location lead to surprising features of flapping flight
stability. Typically, flight stability can only be ensured
through careful distribution of weight and lifting surfaces
[22, 23]. In our system, on the other hand, the simplest
up-down asymmetric shapes that are able to produce lift
also lead to stability. The key element is the sensitive de-
pendence of the angle of vortex emission on the orienta-
tion of the body, and future studies that include compu-
tational simulations will likely provide additional insights
into the role of such unsteady flow effects.

More broadly, expressing the relevant physical fac-
tors as dimensionless quantities offers general insights
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into hovering. A dimensional analysis of our system re-
veals seven groups of variables whose values characterize
force generation and stability. Vortex shedding demands
that fluid inertia overcome viscosity and thus that the
Reynolds number be high, Re ≫ 1. Weight support also
requires that the flow acceleration be comparable to grav-
itational acceleration, Af2/g ∼ 1. Force production has
been found to be most effective when the flow amplitude
and body size are comparable, A/L ∼ 1 [18]. Likewise, a
strong asymmetry is needed, which is associated with a
pyramid opening angle of about 60 degrees [19]. For free
flight, three additional parameters are introduced that
relate to the body mass, moment of inertia, and CoM lo-
cation. The large body-to-fluid mass ratio (m/ρL3

∼ 10,
where ρ is the fluid density) indicates that flyers must
rely on aerodynamic forces and not buoyancy. The mo-
ment of inertia (I/ρL5

∼ 10) does not affect the fluid
torque nor the potential but alters only the time-scales
of the dynamics, as shown below. Finally, as we empha-
size here, the CoM height above the base (h/L ∼ 0.1−1)
is a critical determinant of stability.
Estimates for important quantities can be expressed in

terms of these parameters. The high-Re fluid force rela-
tive to body weight can be estimated as ρ(Af)2L2/mg =
(ρL3/m)(Af2/g)(A/L) ∼ 0.1. This ratio must be unity
for hovering, of course, and the underestimate reflects
the deficiency of quasi-steady calculations [19]. For sta-
bility, recovery from a tilt is determined by fluid torques
(∼ mgh) overcoming body inertia, which for our system

yields a dimensionless recovery time of
√

I/mgh/T =
√

(I/ρL5)(ρL3/m)(Af2/g)(L/A)(L/h) ∼ 1. Thus, sta-
bilization occurs as fast as an oscillation, as is consistent

with the dynamics of Figs. 1(b) and 4(c).

While we know of no insect that employs the particu-
lar flight strategy studied here – by, say, symmetrically
heaving an asymmetric wing – the shedding of dipolar
vortices is a critical feature common to our system and
insects [9]. Our results suggest that future studies might
evaluate how this shedding process is modified when an
insect experiences an in-flight perturbation [13]. Under-
standing such unsteady flow mechanisms may help re-
solve the current disagreement among models that assess
the intrinsic stability of insects. Further, a complete anal-
ysis of insect flight stability will require knowledge of the
CoM location and, in particular, the spatial arrangement
and time-variation of fluid forces relative to this point.

Finally, the potential revealed here may be ideal for
a free-flying device. In addition to the potential well,
the region of neutral stability would not hinder the in-
tentional reorientation needed for maneuvering. Thus
this arrangement offers a simultaneous realization of the
desirable but antagonistic goals of stability and maneu-
verability. A robot inspired by this work – for example,
a pyramid or cone driven to flap up-and-down – would
represent an alternative approach to the more literal
biomimetic implementations that flap wings in a manner
similar to insects [24, 25]. The lack of a direct biologi-
cal analog for our conceptual vehicle does not necessarily
imply an inferior design, but perhaps one that has not
yet been explored by evolution.
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