
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamic Structure Factor of Vibrating Fractals
Shlomi Reuveni, Joseph Klafter, and Rony Granek

Phys. Rev. Lett. 108, 068101 — Published  7 February 2012
DOI: 10.1103/PhysRevLett.108.068101

http://dx.doi.org/10.1103/PhysRevLett.108.068101


LJ13066

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Dynamic Structure Factor of Vibrating Fractals

Shlomi Reuveni,1,2 Joseph Klafter,1 and Rony Granek3,∗

1 School of Chemistry, Tel-Aviv University, Tel-Aviv 69978, Israel

2 School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

3 The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering,

Ben-Gurion University of The Negev, Beer Sheva 84105, Israel

Abstract

Motivated by novel experimental work and the lack of an adequate theory, we study the dynamic

structure factor S(k, t) of large vibrating fractal networks at large wavenumbers k. We show

that the decay of S(k, t) is dominated by the spatially averaged mean square displacement of a

network node, which evolves subdiffusively in time, 〈(~ui(t)− ~ui(0))
2〉 ∼ tν , where ν depends on

the spectral dimension ds and fractal dimension df . As a result, S(k, t) decays as a stretched

exponential S(k, t) ≈ S(k)e−(Γkt)
ν

with Γk ∼ k2/ν . Applications to a variety of fractal-like systems

are elucidated.
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Naturally occurring fractals are ubiquitous [1]. Fractal models have been used to describe

the dynamics of low temperature glasses and porous materials [2], proteins [3–8], sol-gel

branched polymer clusters [9], and colloidal aggregates [10]. Scattering experiments, in which

one is able to simultaneously probe correlations in space and time, allow the characterization

of fractal structures. A key player in these experiments is the structure factor (SF) [11, 12].

While the static SF of fractals is well understood [2, 11, 12], dynamic structure factor (DSF)

calculations are limited. In the context of solid fractals, the DSF has been extensively

analyzed on the “single phonon” level [2], and in the absence of any source of friction. This

provides a good description for the inelastic (Brillouin) scattering from solid fractals, but is

not adequate for the quasi-elastic scattering from low dimensional fractals in solutions that

have large fluctuations and friction dominated dynamics, such as branched polymers and

colloidal aggregates [9, 10].

In this Letter we calculate the DSF S(k, t) of vibrating fractal structures. A striking

example of a biological fractal in solution is the spatial organization of chromatin in the

nucleus. Recent experiments [13] stand in line with long standing theoretical predictions

[14] suggesting a fractal (crumpled) globule structure. And yet, other fractal chromatin

structures were also claimed consistent with experimental results [15]. Combined with the

theory presented herein, DSF studies may aid resolving this conflict. Interestingly the DSF

has been measured in a different biological system in which neutron spin-echo (NSE) studies

were performed on horse heart myoglobin and bovine hemoglobin in solutions. In the large

wavenumber k regime corresponding to kRg ≫ 1, where Rg is the gyration radius, and at

low concentrations and times shorter than 1ns, the DSF decays as a stretched exponential

[16]. As we demonstrate here this decay is distinctive of fractal structures and the fractal-

like nature of proteins [4–6, 8] make them a natural case study for our theory. A stretched

exponential decay of the DSF is also observed in dynamic light scattering experiments from

suspensions of soft colloids that form glasses at large volume fractions. In these systems a

universal stretching exponent that is independent of the volume fraction is found [17]. These

findings can be explained by the theory advanced here assuming similarity of the structure

(or, more precisely, of the force constant network) between these glasses and 3D percolation

networks, as done for solid glasses [2].

Fractals are characterized by a few broken dimensions [18]: (i) the mass fractal dimension

df , that governs the scalingM(r) ∼ rdf of the massM(r) enclosed in concentric spheres of ra-
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dius r, (ii) the topological dimension dl that governs the scaling M(l) ∼ ldl of the mass M(l)

enclosed in concentric “spheres” of radius l in the topological (or “manifold”/“chemical”)

space, and (iii) the spectral dimension ds that governs the scaling g(ω) ∼ ωds−1 of the vibra-

tional density of states g(ω) with frequency ω [2]. The fractal dimension is experimentally

measurable as it governs the power law behavior of the static SF. While known to be related,

a general theory explaining the decay of the DSF in terms of df and ds is still lacking and

elucidation of ds based on the DSF is usually not possible.

The main result of this Letter can be simply stated as follows. Assume a large bead-

spring fractal network with ds < 2 and arbitrary df , and consider a scattering experiment

at large wavenumbers k such that both kRg ≫ 1 and kū ≫ 1, where ū ≡
√

〈u2〉 is the root

mean square bead displacement. The latter obeys the generalized Landau-Peierls instability

[5, 6], ū ∼ N1/ds−1/2 where N is the number of beads. In this limit, and within a wide

window of time, we find that S(k, t) decays as a stretched exponential S(k, t) ≃ S(k)e−(Γkt)
ν

,

where the relaxation rate anomalously depends on k, Γk ∼ k2/ν . The stretched exponential

relaxation is a consequence of the anomalous diffusion of a network bead, with a mean

square displacement (MSD) evolving as ∼ tν . The exponent ν depends on the fractal and

spectral dimensions, ν = 1− ds/2 in a Rouse model where the friction is local [3, 6, 19, 20],

ν = (2 − ds)/(2 − ds + ds/df) in a Zimm model where the friction is long range [7], and

ν = 2− ds for vanishing friction [3]. The latter situation applies for solid fractals, yielding a

result which goes much beyond the “single phonon/fracton” approach used previously and

valid only for kū ≪ 1 [2]. Our result allows for an experimental evaluation of ds.

We repeat briefly the definitions and assumptions of the scalar elasticity model [2]. The

ground configurational state of the fractal is described by the set of coordinates ~Req(~l), where

~l is the coordinate of a bead in topological space, and deviations from the ground state are

denoted by the displacements ~u(~l) = ~R(~l) − ~Req(~l). The scalar elasticity “bead-spring”

Hamiltonian is [2]

H
[

{~u(~l)}
]

=
1

2
mω2

o

∑

<~l~l′>

(

~u(~l)− ~u(~l′)
)2

, (1)

where < ~l ~l′ > stands for pairs connected by springs, ωo is the spring self-frequency, and

m is the bead mass (mω2
o is the spring constant). The eigenstates (normal modes) of the

Hamiltonian (1) form an orthonormal set and, on a fractal, are strongly localized in space,

bearing the name “fractons” [2, 21].
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In order to derive the DSF of vibrating fractals, we discuss first the relevant displacement

pair correlation function 〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉, where it is understood that spatial averaging

has been performed, thus making this correlation function depend only on the relative

separation |~ℓ− ~ℓ′| in topological space.

In Refs. [3, 6, 7] we derived the normal mode space Langevin equations for fractals in the

high damping and vanishing damping limits. In the high damping limit, which is our main

focus here due to its relevance to fractal dynamics in solutions, two models were considered

[11, 20]: (i) a Rouse type model in which the hydrodynamic friction is local [3], and (ii) a

Zimm type model where we accounted for the long range hydrodynamic interaction between

different beads, that is transmitted through the velocity field of the solvent [7]. For both

models, the Langevin equations of motion in the mode space can be written in the form

d~uα

dt
= −Γα~uα + ~ζα(t) . (2)

where uα(t) is the amplitude of a normal mode α at time t, Γα = mω2
αΛα is the mode

relaxation rate, ~ζα(t) is thermal white noise that obeys the fluctuation-dissipation theorem

〈~ζα(t)~ζβ(t
′)〉 = 2kBTΛαδα,βδ(t− t′) , (3)

and Λα is the mode mobility coefficient. The dependence of Λα on ωα is sensitive to the

hydrodynamic model in question. To account for both models in a single formula, we shall

write the relaxation rate as Γα ≃ Ā ω θ
α , where (i) in the Rouse model: θ = 2 ; Ā = m/(3πηb)

where η is the solvent viscosity and b is the bead diameter [3], and (ii) in the Zimm model:

θ = 2− ds + ds/df ; Ā = A m/(6πηbω
ds/df−ds
o ), where A is a numerical constant [7].

We use Eq. (2) to evaluate the two-point correlation function for the time regime τ0 ≪

t ≪ τN , where τ0 = Ā−1ω−θ
o and τN ≃ Ā−1ω−θ

o N θ/ds are the shortest and longest vibrational

relaxation times (respectively). We obtain the following scaling form

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 =
kBT

mωds
o

(Āt)ν Φ
[

|~ℓ− ~ℓ′|/ℓ(t)
]

, (4)

where Φ[v] is the scaling function [22, 23] (Φ[0] = const.) and ℓ(t) = ωds/dl
o (Āt)

ds
dlθ is the

(dimensionless) length describing the propagation with distance, in topological space, of

the bead-bead correlations or localized perturbations. In real space, this (dimensioned)

propagation length is ξ(t) ≃ bℓ(t)dl/df = b ω
ds/df
o Āζ tζ where ζ = ds/(dfθ). Putting ~ℓ = ~ℓ′
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in Eq. (4) it reduces simply to the (spatially averaged) MSD of a bead. Provided that ds < 2,

it shows the familiar anomalous subdiffusion

〈∆~u(t)2〉 ≡ 〈(~u(~ℓ, t)− ~u(~ℓ, 0))2〉 = B tν . (5)

where ν = (2− ds)/θ and B is a constant.

The scaling form Eq. (4) implies a crossover behavior around a time t∗(r) for pairs at a

distance r ≡ |~Rℓ − ~Rℓ′ | apart, t
∗(r) = Ā−1ω−θ

o (r/b)df θ/ds [24]. For t ≪ t∗(r), the correlation

function is very close to its static value

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 ≈
kBT

mω2
o

(

r

b

)dw−df

. (6)

where dw = 2df/ds. For longer times, t∗(r) ≪ t ≪ τN , such that information has propagated

much beyond the distance r, it approaches the MSD of a single bead, 〈(~u(~ℓ, t)−~u(~ℓ′, 0))2〉 ≃

B tν , implying that the two beads are essentially moving together.

We note that the two-point correlation function Eq. (4) can be transformed from topo-

logical space to the real 3D Euclidean space,

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 =
kBT

mω2
o

(

r

b

)dw−df

Ξ

[

t

t∗(r)

]

. (7)

Ξ[u] has the following asymptotes: (i) Ξ[u] ≃ const. for u ≪ 1, and (ii) Ξ[u] ∼ uν for u ≫ 1.

Eq. (7) is particularly useful for the numerical analysis that we perform next.

To test the above analytic expression we first evaluate numerically the pair correlation

function on a vibrating Sierpinski gasket obeying the Rouse dynamics [1, 2, 18]. In Fig.

1(a) we plot, on a log-log scale, four averaged two-point correlation functions against the

normalized time t/τ0 [25]. Note the crossover from a constant value, that increases with

increasing r as predicted by Eq. (6), to an anomalous subdiffusion time regime, identical to

that of the single particle MSD (effectively equal to the correlation function for r = b = 5A).

In the subdiffusion regime, the behavior is essentially independent of the distance r. Also

note that the crossover time increases with increasing r as implied by the scaling with r of

t∗(r). A normalized version of Fig. 1(a), shown in Fig. 1(b), asserts the validity of Eq. (7).

We now turn to calculate the fractal DSF with rotational and translational motion ar-

rested,

S(~k, t) ≡
1

N

〈

∑

~ℓ,~ℓ′

ei
~k·(~R(~ℓ,t)−~R(~ℓ′,0))

〉

, (8)
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where ~R(~ℓ) is the coordinate of a node ~ℓ in the center of mass coordinate frame and the sums

run over all network nodes. Changing to displacement variables, ~R(~ℓ, t) = ~Req(~ℓ) + ~u(~ℓ, t),

using the Gaussian property of the stochastic variable ~u(~ℓ, t)− ~u(~ℓ′, 0) [11] and the isotropy

of the scalar elasticity model, and performing angular averaging, we find, omitting from now

on the subscript “eq” in ~Req(~ℓ),

S(k, t) =
1

N

∑

~ℓ,~ℓ′

sin [kRℓℓ′]

kRℓℓ′
e−

k2

6
〈(~u(~ℓ,t)−~u(~ℓ′,0))

2

〉 , (9)

where Rℓℓ′ = |~R(~ℓ)− ~R(~ℓ′)| is the Euclidean, real-space, distance between beads ~ℓ and ~ℓ′.

At short times, t ≪ t∗(k−1) ∼ k−df θ/ds , information did not have time to negotiate a

“blob” of linear size ∼ k−1 and we find that the DSF did not decay much, S(k, t) ≃ S(k). At

longer times, t∗(k−1) ≪ t ≪ τN , i.e. when 1 ≪ kξ(t) ≪ kRg, information has propagated

beyond the scattering wavelength ∼ 1/k. Physically, this implies that the “blob” of size

∼ 1/k, that is controlling the relaxation at wavevector ~k, is now moving almost coherently

as if it was a single bead. At this time regime we find a stretched exponential decay of the

DSF,

S(k, t) ≈ S(k) exp [− (Γkt)
ν ] (10)

where

Γk = (B/6)1/νk2/ν . (11)

Note that the stretching exponent is exactly the anomalous diffusion exponent ν. The

stretched exponential decay, together with the dependence of the stretching exponent ν

on the broken dimensions ds and df , is thus a strong signature of the fractal structure.

Corrections due to rotational and translational diffusion are considered elsewhere and are

shown to vanish for large fractals [23]. In Fig. 2 we plot the DSF (and SF) for the Sierpinski

gasket.

The anomalous wavenumber dependence of the relaxation rate, Γk ∼ k2/ν , and the anoma-

lous diffusion, 〈∆~u(t)2〉 ∼ tν , can be explained using simple scaling hypotheses. For the

relaxation rate we assume Γk = Dk2h(kū), where h(x) is a scaling function and D is the

center of mass diffusion coefficient of the fractal. We make use of the generalized Landau-

Peierls instability, ū ∼ N1/ds−1/2, and take D ∼ N−1 and D ∼ R−1
g ∼ N−1/df for the Rouse

and Zimm type models of friction [11], respectively. Demanding that Γk is independent

of N for kū ≫ 1, the scaling function for x ≫ 1 must satisfy h(x) ∼ x2ds/(2−ds) (for the
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Rouse model) and h(x) ∼ x2ds/[df (2−ds)] (for the Zimm model), leading to Γk ∼ k2/ν with

ν = 1 − ds/2 (Rouse) and ν = (2 − ds)/(2 − ds + ds/df) (Zimm) as stated. Similarly, for

the MSD we assume 〈∆~u(t)2〉 = ū2y(t/τN) where y(x) is the scaling function and τN is the

longest vibrational relaxation time. Assuming τN ≃ ū2/D, such that τN ∼ N2/ds (Rouse)

and τN ∼ N2/ds−1+1/df (Zimm), and demanding that for t ≪ τN the MSD is independent

of N , it follows that y(x) ∼ xν for x ≪ 1 (with ν taking the above stated values associated

with the Rouse and Zimm models) leading to 〈∆~u(t)2〉 ∼ tν .

In this Letter we presented a through study of the DSF S(k, t) of vibrating fractals in

solutions. Our main result is that at large wavenumbers the decay of the DSF is strongly

influenced by the anomalous diffusion of the spatially averaged MSD of a network bead.

The result for large fractals is a stretched exponential decay of the DSF, which reduces to

the known DSF of a linear Rouse polymer chain (ds = 1), and a linear-Gaussian Zimm

polymer chain (ds = 1, df = 2) [11]. Among possible applications are: (i) Proteins, for

which a stretched exponential decay has been recently measured by NSE [16], supporting

their fractal-like structure. (ii) Glass forming colloidal suspensions [17]. Assuming analogy

to 3D percolation network, that implies df ≃ 2.48 and ds ≃ 1.328, and accounting for

the hydrodynamic coupling, we suggest a stretched exponential decay with ν ≃ 0.556,

remarkably close to the observed value ν ≃ 0.6. (iii) Colloidal gels [26], that show a clear

fractal structure and for which a Zimm-type dynamics and bond-bending potential explains

well the observed stretched exponential decay [7]. (iv) Chromatin [14, 15], for which it was

recently shown that telomeres perform anomalous subdiffusion with ν ≃ 0.32 [27]. This may

be interpreted, within the Rouse model that yields ν = 1−ds/2 (noting that in such a dense

polymer system hydrodynamics is likely to be screened), by ds ≃ 1.36. This value of ds is

remarkably close to that of percolation clusters in 2 < d < 5 dimensions and suggests the

presence of DNA crosslinks (e.g., via ligation). According to the present calculation, it is

suggested that the DSF of chromatin will decay as a stretched exponential with stretching

exponent ≃ 0.32, which can motivate experiments in this direction. We believe that our

results can also be applied to a variety of other systems exhibiting fractal structure.
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(a)

(b)

FIG. 1: (a) The pair correlation function < (~u(~l, t) − ~u(~l′, 0))2 > is evaluated numerically, using

the Rouse-type model, for bead pairs located on a vibrating Sierpinski gasket with 6561 nodes [25].

For a fixed value of the inter-bead distance r, < (~u(~l, t) − ~u(~l′, 0))2 > is calculated for all pairs

distanced r± 1
2A apart where r = 5, 15, 25, 50A. For every point in time, the correlation functions,

in each distance group, are averaged over all pairs in that group. (b) Following the predicted

scaling behavior stated in Eq. (7), we normalize the correlation functions from (a) by rdw−df and

the time by t∗(r) ∼ rdw . Data collapse to a single master curve is observed for τ0 ≪ t ≪ τN .

The slope ν in the subdiffusive time regime is found to be 0.317, in excellent agreement with the

theoretical value of ν = 1− ds/2 ≃ 0.317.
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FIG. 2: log 10

(

−log 10

(

S(k, t)/S̃(k)
))

for k = 1010m−1 is plotted vs. log 10(t/τ0) for vibrating

Sierpinski gaskets of various sizes (Rouse model) [25]. Here S̃(k) is the frozen SF (Eq. (9) with e(...)

set to unity). Note that a straight line, whose slope is positive, is formed on an intermediate time

window that widens up as we move from smaller to larger gaskets, demonstrating the diminishing

contribution of finite size effects. The stretching exponent obtained from the plot, 0.325, is in

excellent agreement with the theoretical value ν ≃ 0.317. Inset: The static SF, S(k) ≡ S(k, t = 0),

against k on a log-log scale. A clear power law decay, with an exponent of −1.583, is visible for

all gaskets, in excellent agreement with theory [2, 12] S̃(k) ∼ k−df , df ≃ 1.585. In contrast to

S̃(k), S(k) does account for the contribution of thermal vibrations. However, as is evident from

the plot, vibrations have a negligible effect on the static SF for the chosen parameter values [25]

and S(k) ≃ S̃(k).
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