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We show that, for Galilean invariant quantum Hall states, the Hall viscosity appears in the
electromagnetic response at finite wave numbers q. In particular, the leading q dependence of the
Hall conductivity at small q receives a contribution from the Hall viscosity. The coefficient of the
q2 term in the Hall conductivity is universal in the limit of strong magnetic field.
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Introduction.—Quantum Hall states have been shown
to possess, in addition to the Hall conductivity, a new
property called the Hall viscosity [1, 2]. The Hall viscos-
ity breaks parity, is dissipationless and can be defined at
zero temperature. It has been shown recently [3, 4] that
the Hall viscosity is related to a topological property of
the quantum Hall state—the Wen-Zee shift [5].

One may ask how the Hall viscosity can be measured.
As originally defined, the Hall viscosity is related to the
stress response of the system to metric perturbations.
Such perturbations can be, in principle, mimicked by
lattice vibrations (sound waves). It has also been sug-
gested that the Hall viscosity determines the stress cre-
ated by an inhomogeneous electric field [7]. In this paper
we show that, for quantum Hall states of systems with
Galilean invariance and made up of particles of the same
charge/mass ratio, the Hall viscosity can be, in princi-
ple, determined from electromagnetic response alone. We
shall show this result first using intuitive physical argu-
ments, and then by employing the formalism of nonrel-
ativistic diffeomorphism invariance, applied to the low-
energy effective action of the Hall liquid.

Main result.—Consider a quantum Hall state in finite
magnetic field B. First we concentrate on the case when
the interaction between particles is short-ranged. (The
case of Coulomb interaction will be treated later in the
paper.) Let us turn on a static longitudinal electric field
E = −∇φ where φ is the scalar potential. We take φ to
vary in space with some wave vector q pointing along the
x direction and measure the Hall current jy (see Fig. 1).
The proportionality between jy and Ex is the wave-vector
dependent Hall conductivity,

jy(q) = σxy(q)Ex(q). (1)

In the limit q → 0, σxy(q) approaches the universal value,
determined by the rational filling factor ν: σxy(0) =
νe2/(2π~). In general, σxy has a nontrivial dependence
on the wave number q.

We will show that, for a Galilean invariant system of
electrons, the coefficient C2 of the first correction in the
low-q expansion of the Hall conductivity

σxy(q)

σxy(0)
= 1 + C2(q`)2 +O(q4`4), (2)

can be related to the Hall viscosity ηa and the function
ε(B) which is is the energy density (energy per unit area)
as function of the external magnetic field ε(B) at fixed
filling factor,

C2 =
ηa

~n
− 2π

ν

`2

~ωc
B2ε′′(B). (3)

Here ` =
√

~c/|e|B is the magnetic length, ωc = |e|B/mc
is the cyclotron frequency, and n is the density of elec-
trons.

Using the relationship between ηa and the shift S:
ηa = ~nS/4 [3, 4], the first term in the right hand side
of Eq. (3) can be written as S/4, which makes clear that
the magnitude of this contribution is robust (i.e., does
not depend on interactions). The second contribution
involves the function ε(B) and is not universal. How-
ever, its magnitude can be extracted independently by
measuring currents created by weak inhomogeneous per-
turbations of the magnetic field δB,

j = −cε′′(B)ẑ×∇δB. (4)

Hence, by measuring the electromagnetic response of the
system to inhomogenous electric and magnetic fields, one
can determine the Hall viscosity.

The situation becomes simpler in the limit of high
magnetic fields (i.e., that of no mixing between Landau
levels) in which the energy ε(B) becomes that of non-
interacting electrons in a magnetic field. For the inte-
ger quantum Hall state with ν = N , the energy density
ε(B) = (N2/4π)~ωc/`2, and the shift S = N , so we have

σxy(q)

σxy(0)
= 1− 3N

4
(q`)2 +O(q4`4) for ν = N. (5)

The result coincides with what has been computed in the
literature (σxy is proportional to Σ1 in the notations of
Ref. [8]). For fractional quantum Hall states with ν <
1, ε(B) = (ν/4π)~ωc/`2, therefore C2 = 1

4S − 1. In
particular, for Laughlin’s states with ν = 1/(2k+1), the
shift S = 2k+1 [5], so

σxy(q)

σxy(0)
= 1 +

2k − 3

4
(q`)2 +O(q4`4), ν =

1

2k+1
. (6)
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In general, for any quantum Hall state, we can find the
q2 correction to σxy(q) from the value of the shift S and
the total energy, as a function of the magnetic field.

Physical argument.—Before presenting the mathemat-
ical proof of the statement made above, we will give a
physical derivation. We will show that the two contribu-
tions to C2 come from two different physical effects.

First let us note that to first approximation, the Hall
fluid moves along the y direction with a velocity that
depends on x (see Fig. 1),

vy(x) = −cEx(x)

B
. (7)

This velocity is determined by balancing electric and
magnetic forces acting on a fluid volume. However, the
flow (7) is a shear flow with a nonzero strain rate. The
Hall viscosity leads to an additional stress in the system,
which in turn induces a correction to the current.

y
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x

FIG. 1: Pattern of flow in an inhomogeneous electric field.

Let us compute the magnitude of the this effect. The
strain rate Vxy = 1

2∂xvy induces, through the Hall vis-
cosity, an additional contribution to the stress, σxx =
−σyy = 2ηaVxy The x-dependence of σxx leads to an ad-
ditional force acting on each volume element of the fluid
along the x axis: fx = −∂xσxx. This force induces a
correction to the Hall current equal to

δjy = − c

B
fx = −η

ac2

B2
E′′x(x). (8)

We thus find the first correction to σxy,

σ(1)
xy (q) =

ηac2

B2
q2. (9)

The second effect is related to the fact that the fluid
flow, in addition to having a shear rate, also has a nonzero
local angular velocity:

Ω(x) =
1

2
∂xvy = −cE

′
x(x)

2B
. (10)

This local rotation acts as an effective magnetic field,
equal to δB = 2mcΩ/e (found by equating the Coriolis
force with the Lorentz force from δB.) On the other
hand, the quantum Hall fluid is a diamagnetic material.
with magnetic moment density M = −∂ε/∂B. For a
constant magnetic field, M is constant. But due to the
fluctuations δB there is an inhomogeneous contribution
to the magnetic moment density,

δM = − ∂2ε

∂B2
δB = ε′′(B)

mc2E′x(x)

eB
. (11)

This fluctuating magnetic moment density leads to an
additional electromagnetic current, j = c ẑ×∇M :

jy = ε′′(B)
mc3E′′x(x)

|e|B
. (12)

We find the second contribution to the Hall conductivity,

σ(2)
xy (q) = −mc

3ε′′(B)

|e|B
q2. (13)

The finite-wave-number correction to the Hall conduc-
tivity is σ

(1)
xy + σ

(2)
xy . Elementary algebraic manipulations

bring it to the form of Eqs. (2) and (3).

Diffeomorphism invariance.—We now formally prove
the result derived above by constructing a low-energy ef-
fective theory of the quantum Hall state. As the quantum
Hall state is gapped, the effective action is as a local func-
tional of the external fields. Expanding in momentum to
lowest order, it is simply the Chern-Simons action. In
order to reproduce the q2 correction to σxy we need to go
beyond leading order.

We shall make use of the nonrelativistic diffeomor-
phism invariance, introduced in Ref. [9]. Our strategy
is to couple our system to gravity and find out the sym-
metries of the action. These symmetries are inherited
by the low-energy effective theory, and impose nontrivial
constraints to the effective Lagrangian.

We consider a quantum Hall state in the presence of an
external gauge field Aµ(t,x) and a spatial metric gij(t,x).
For example, for the case of free fermions we assume the
action to be

S0 =

∫
dtd2x

√
g
[ i

2
(ψ†∂tψ − ∂tψ†ψ) +A0ψ

†ψ

− gij

2m
(∂iψ

† + iAiψ
†)(∂jψ − iAjψ)

]
. (14)

We will set ~ = 1 and absorb an e/c factor into the
normalization of the gauge potential Ai. Most of the
time we will set the spatial metric to be flat (gij = δij)
at the end of calculations, but it will be useful to consider
a general metric in the intermediate steps.

The action (14) is invariant under reparametrization
of spatial coordinates xk → xk + ξk, where ξk depends
both on space and time, ξk = ξk(t,x). The passive form
of the transformations is

δA0 = −ξk∂kA0 −Ak ξ̇k, (15)

δAi = −ξk∂kAi −Ak∂iξk −mgik ξ̇k, (16)

δgij = −ξk∂kgij − gkj∂iξk − gik∂jξk, (17)

δψ = −ξk∂kψ. (18)

The Galilean transformation is a special case with ξk =
vkt. As explained in Ref. [9], the transformations above
can be motivated by taking a nonrelativistic limit of rel-
ativistic diffeomorphisms.
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Interactions can be introduced in a way which pre-
serves the diffeomorphism invariance. For example, by
adding to (14)

S = S0 +

∫
dtd2x

√
g
(
λψ†ψφ− 1

2
gij∂iφ∂jφ−

m2
φ

2
φ2
)

(19)
one introduces an attractive potential of range m−1φ be-
tween the particles. The new action is diffeomorphism
invariant if φ transforms as a scalar δφ = −ξk∂kφ. A
generic potential decaying faster than an exponential can
be represented by an infinite number of mediating fields,
and so coupling to the external metric can be made com-
patible with diffeomorphism invariance.

Coulomb interactions can also be introduced, but now
the field mediating the interaction propagates in three
spatial dimensions. We can assume that the spatial met-
ric does not depend on the third direction

S = S0 +

∫
dtd2x

√
g a0(ψ†ψ − n0)

+
2πε

e2

∫
dtd2xdz

√
g
[
gij∂ia0∂ja0 + (∂za0)2

]
. (20)

(ε is the dielectric constant). We have included a neu-
tralizing background with density n0. The full action
is diffeomorphism invariant if a0 transforms as a scalar:
δa0 = −ξk∂ka0.

Power counting.—We now start constructing the low-
energy effective field theory of the quantum Hall states.
For incompressible states, there is no low-energy excita-
tions, and we can integrate out ψ. If interactions are
short-ranged, the fields φ mediating interactions can also
be integrated out. Thus the effective Lagrangian is a
local function of the external fields Aµ, gij and their
derivatives. The effective action must be invariant un-
der (15)—(17).

To organize a derivative expansion, one needs a power-
counting scheme with a small parameter. There is an am-
biguity in choosing the scheme, as the time derivative ∂t
and spatial derivatives can be chosen to be independent
expansion parameters. For definiteness, in this paper we
use the following scheme. All quantities will be regarded
as proportional to some powers of a small parameter ε,
times some powers of ωc and `. The external fields are
assumed to vary slowly in space and time,

∂i ∼ ε`−1, ∂t ∼ ε2ωc. (21)

As for the magnitude of external perturbations, we as-
sume

δA0 ∼ ε0ωc, δAi ∼ ε−1`−1, δgij ∼ 1. (22)

In this scheme, we allow for order one variations of the
metric, the magnetic field (δB ∼ ε0`−2) and the chemi-
cal potential (A0). In further formulas, the electric and

magnetic fields are defined as

Ei = ∂iA0− ∂0Ai, B =
F12√
g

=
εij∂iAj√

g
≡ εij∂iAj , (23)

so Ei = O(ε) and B = O(1).

Chern-Simons and Wen-Zee terms.—Two important
ingredients in our construction of the effective field theory
are the Chern-Simons action and the Wen-Zee action.
The Chern-Simons action is

SCS =
ν

4π

∫
dtd2x εµνλAµ∂νAλ , (24)

and is of order ε0 in our power counting scheme. This will
be the leading term in the effective action. To construct
the Wen-Zee action, we first define the spin connection.
We introduce a spatial vielbein eai , a = 1, 2 so that gij =
eai e

a
j and εabeai e

b
j = εij . The vielbein is defined up to

local O(2) rotations in a space. If we now define the
connection ωµ,

ω0 =
1

2
εabeaj∂0e

b
j , (25)

ωi =
1

2
εabeaj∇iebj =

1

2
(εabeaj∂ie

b
j − εjk∂jgik), (26)

then under local O(2) rotations ωµ transforms like an
Abelian gauge potential ωµ → ωµ−∂µλ. By using ωµ we
can construct the following gauge invariant action

SWZ =
κ

2π

∫
dtd2x εµνλωµ∂νAλ. (27)

This action is of order ε2 in our power counting scheme
and has to be included if we work to that order. The
ωdω Chern-Simons term, on the other hand, is of order
ε4 and will not be considered.

The coefficient κ is related to the shift S. Indeed, the
“torsion magnetic” field ∂1ω2−∂2ω1 = 1

2

√
gR where R is

the scalar curvature. Integrating by parts, the Wen-Zee
action contains a term

κ

2π
εµνλωµ∂νAλ '

κ

4π

√
g A0R+ · · · (28)

which gives a contribution to the particle number density
that is proportional to the scalar curvature. If the quan-
tum Hall state lives on a closed two dimensional surface,
then the total number of particles is

Q =

∫
d2x
√
g j0 =

∫
d2x
√
g
( ν

2π
B+

κ

4π
R
)

= νNφ+κχ

(29)
where Nφ is the total number of magnetic fluxes and
χ = 2(1 − g) is the Euler character. Comparing to the
definition of S in Ref. [5], we find κ = 1

2νS. For the
integer Quantum Hall state with ν = N , κ = N2/2. For
Laughlin’s states κ = 1/2.
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The Wen-Zee action gives rise to Hall viscosity [6].
Expanding the WZ term to quadratic order, one finds,
among other terms,

SWZ = − κB
16π

εijδgik∂tδgjk + · · · (30)

which implies the presence of an odd term in the stress
tensor two point function, or Hall viscosity. The value of
the Hall viscosity is ηa = κB/4π = 1

4Sn. This relation-
ship between the Hall viscosity and the shift has been
derived previously in Ref. [4].

Most general effective action.—It is straightforward to
verify that both SCS and SWZ are not diffeomorphism
invariant, and need to be corrected. In fact, to order
O(ε2), the most general effective action can be written as

S =
∫

dtd2x
√
g
∑5
i=1 Li, where Li (i = 1, . . . , 5) are five

independent general diffeomorphism invariant (to order
ε2) terms

L1 =
ν

4π

(
εµνλAµ∂νAλ +

m

B
gijEiEj

)
, (31)

L2 =
κ

2π

(
εµνλωµ∂νAλ +

1

2B
gij∂iBEj

)
, (32)

L3 = −ε(B)− m

B
ε′′(B)gij∂iBEj , (33)

L4 = −1

2
K(B)gij∂iB ∂jB, (34)

L5 = Rh(B), (35)

where ε(B), K(B), and h(B) are functions of B. The
function ε(B) has the physical meaning of the energy
density of the quantum Hall state as a function of the
magnetic field B, L4 and L5 do not enter the quantities
of of our interest. The next to leading order term in L1

enforces compliance with Kohn’s theorem. The two-point
function of the electromagnetic current jµ is obtained
by taking the second derivative of the effective action
with respect to Aµ, then setting perturbations to zero.
Equivalently we can differentiate the effective action once
with respect to the external fields to get the current. We
find, in flat space

ji =
ν

2π
εijEj−

1

B

[ κ
4π
−mε′′(B)

]
εij∂j(∇·E)+ · · · (36)

where · · · refers to term that vanish when the magnetic
field is not perturbed. Equations (2) and (3) are repro-
duced from this formula.

Inclusion of Coulomb interactions.—In the case with
Coulomb interactions, one needs to take into account the
screening of the electric field. The expansion (2,3) there-
fore applies not to σxy(q) but to

σ̃xy(q) =

[
1 +

e2χ(q)

2πε q

]
σxy(q) '

[
1 +

νκ
π

(q`)
]
σxy(q)

(37)
where κ = e2/(4πε`ωc) and χ(q) is the static suscepti-
bility, the small-q behavior of which is is determined by

Kohn’s theorem: χ(q) = νmq2/(2πB). In the limit of
high magnetic fields where κ � 1, the distinction be-
tween σxy and σ̃xy disappears.

Conclusions.—We have shown that the Hall viscosity
does not only appear in the response to gravitational
fluctuations, but also, under certain circumstances, in
a purely electromagnetic response function. For this one
needs Galilean invariance and that all particles have the
same charge/mass ratio, a condition satisfied in the most
interesting physical systems.

One notes that topological arguments alone are insuf-
ficient to determine the coefficient of the q2 term in the
finite wave number Hall conductivity. But topology, cou-
pled with nonrelativistic diffeomorphism invariance, is
powerful enough to find this coefficient [e.g., Eq. (6)].
It would be interesting to explore consequences of diffeo-
morphism invariance for other systems with topological
order, e.g., the px + ipy paired state or the superfluid B
phase of 3He or the compressible ν = 1/2 state.

Finally, the wave number dependence of the Hall con-
ductivity should be measured and checked against our
prediction. Such a measurement would be a measure-
ment of the Hall viscosity.
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After this work was finished, we learned that the first
contribution on the right hand side of Eq. (3) has been
derived by B. Bradlyn, M. Goldstein, and N. Read [10].
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