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Transport through an Anderson junction (two macroscopic electrodes coupled to an Anderson
impurity) is dominated by a Kondo peak in the spectral function at zero temperature. We show that
the single-particle Kohn-Sham potential of density functional theory reproduces the linear transport,
despite the lack of a Kondo peak in its spectral function. Using Bethe ansatz techniques, we calculate
this potential for all coupling strengths, including the cross-over from mean-field behavior to charge
quantization caused by the derivative discontinuity. A simple and accurate interpolation formula is
also given.

It is a truth universally acknowledged that many-body
effects in strongly correlated systems are not reproduced
by mean-field theory. Although Kohn-Sham (KS) density
functional theory (DFT) is formally exact, it is a non-
interacting theory yielding only the ground-state energy
and density of a system. No other information about the
correlated many-body wavefunction is available. Dynam-
ical properties, such as excitations and response func-
tions, are also not predicted by ground-state DFT, even
with the exact functional [1]. The hope is that, for
weakly-correlated systems in which ground-state DFT
approximations perform well for total energies, geome-
tries, etc., the errors in such calculations are small. Noth-
ing in the theorems of DFT guarantees that a ground-
state KS calculation can describe transport correctly [2].

Consider transport through an Anderson junction
[3, 4], composed of two macroscopic leads coupled to an
Anderson impurity. As an integrable system, the Ander-
son model is a paradigm of many-body physics. It is also
an accurate model of the low-energy spectrum of molec-
ular radical-based junctions [5]. In general, transport
through such an interacting nanostructure can not be
described exactly by the Landauer formula [6, 7]. How-
ever, for the specific case of the Anderson model, where
interactions are included only on the impurity and not in
the leads, the zero-temperature linear-response conduc-
tance in the absence of magnetic field can be computed
in the Landauer approach [4, 8, 9]. In Fig. 1, we show
the zero-temperature transmission through an Anderson
junction as a function of the energy ε of the resonant level
using Bethe ansatz (BA), Kohn-Sham (KS) DFT, and
Hartree-Fock (HF). In the figure, µ is the chemical po-
tential (Fermi energy) of the metal electrodes. Remark-
ably, the KS-DFT treatment of this problem precisely re-
produces the BA transmission, apparently describing the
non-perturbative Kondo effect whose spectral peak is the
source of the perfect transmission when ε < µ < ε+ U .

The inability to describe sharp steps in transmission is
a well-understood failure of standard density functional
approximations. In the limit of weak coupling to the

leads, the system is a prototype example where the ef-
fects of the infamous derivative discontinuity is seen [10].
For such a system, the exchange-correlation (XC) energy
of the molecule is strictly linear between integer values,
and so the XC potential, its functional derivative, jumps
discontinuously at such values [10]. This effect has been
implicated in many well-known failures of DFT approxi-
mations such as strongly-correlated systems [11], charge-
transfer excitations [12], and over-estimation of the cur-
rent in organic junctions [13].

In this letter, we (a) solve the Anderson junction us-
ing BA and invert the KS equations to derive the KS
potential, (b) show that the transport calculated within
KS-DFT reproduces the BA results, but only for zero
temperature and weak bias, and (c) parametrize the XC
potential, providing a unique interpolation formula that
works for all correlation strengths. The transport and
occupancy of the Anderson model are intimately related
via the Friedel sum-rule, a statement equating the occu-
pancy and the transmission phase at the Fermi energy, as
has been discussed for nearly isolated resonances [14, 15]
or single-mode leads [15]. Since real molecular junctions
fit neither of these categories, it reopens the question of
just when an accurate ground-state KS calculation will
yield accurate transport.

Using BA [16, 17], we calculate the KS potential for
the Anderson model, and investigate how the derivative
discontinuity develops in the limit of weak impurity-lead
coupling. From this solution, we extract the asymptotic
scaling form of the derivative discontinuity and establish
an interpolation formula for the KS potential which is ac-
curate for all coupling strengths, computationally simple,
and illustrates the crossover from mean-field behavior at
strong impurity-lead coupling to charge quantization at
weak coupling.

Consider a junction composed of a nanoscale central
region (C) connected to two macroscopic electrodes, la-
beled left (L) and right (R). The Hamiltonian of the sys-
tem is H = HC +HT +HR +HL, where HR/L describe
Fermi gases in the electrodes and HT describes tunnel-
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FIG. 1. (Color online) Zero-temperature transmission of an
Anderson junction as a function of ε using Bethe ansatz (BA),
Kohn-Sham DFT (KS), and (spin-restricted) Hartree-Fock
(HF). As U increases, HF misses the sharp structure, but
the KS transport is always the same as that from BA.

ing between the central region and the electrodes. The
central region has the Hamiltonian [3]:

HC = ε(n̂↑ + n̂↓) + Un↑n↓, (1)

where n̂σ = d†σdσ is the number operator for spin σ and
the charging energy U is given by the Coulomb integral.
The Green’s function of an Anderson junction may be
found using Dyson’s equation in an orthonormal basis:

G(E) = [E − ε− ΣC(E)− ΣT(E)]−1 , (2)

where ΣC is the Coulomb self-energy and ΣT ≡ ΣR
T+ΣL

T

is the tunneling self-energy [18]. We consider transport
in the broad-band limit where Σα

T(E) = −iΓα/2 is pure
imaginary and independent of energy, and define the
mean tunneling-width Γ = (ΓL + ΓR)/2.
At zero temperature, the linear-response transmission

function of an Anderson junction is given by [4, 17]

T (E)|E=µ = ΓLΓR|G(µ)|2 =
4ΓLΓR

(ΓL + ΓR)
2 sin2

[

θ(µ)

2

]

,

(3)
where θ(µ) is the sum of transmission eigenphases for up-
and down-spin electrons evaluated at the Fermi energy
µ = µL = µR. The total number of electrons on the
central impurity is related to θ(µ) at zero temperature
by the Friedel sum-rule [19–21]

〈nC〉 = θ (µ) /π. (4)

In the broad-band limit, from the Bethe ansatz [16]

〈nC(µ)〉 = 1− i

π
√
2

∫ ∞

−∞

dω

ω + iη

e−|ω|/2

G(−)(ω)
∫ ∞

−∞

eiω(g(k)−Q)∆(k)dk

(5)
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FIG. 2. (Color online) The occupancy of the Anderson junc-
tion as a function of µ−ε. The BA results (solid line) exhibit
discrete charge steps when U ≫ Γ, whereas the mean-field
RHF (dashed line) never does. The approximate occupancies
calculated self-consistently within the KS-scheme using ε̃XC

[Eq. (15)] (dotted line) are nearly indistinguishable from the
BA results. The BA occupancies were used to generate Fig. 1.

with Q defined by the condition [8]

U − 2(µ− ε)√
2UΓ

=
i√
2π

∫ ∞

−∞

dω

ω + iη

e−|ω|/2−iωQ

G(−)(ω)

1√−iω + η
,

(6)
making use of the following functions

G(−)(ω) =

√
2π

Γ(1/2 + iω/2π)

(

iω + η

2πe

)iω/2π

, (7)

g(k) = (k+µ−U/2)2/(2UΓ), and ∆(k) = (1/π)Γ/(Γ2 +
(k+µ)2), where Γ(x) is the Gamma function and η = 0+.
〈nC〉 is plotted as a function of ε in Fig. 2. [22]

The KS ansatz of DFT employs an effective single-
particle description, defined to reproduce the ground-
state density of the interacting system. By the
Hohenberg-Kohn theorem, this potential is unique if it
exists (it usually does) [1]. The relationship between
potential and density is fixed only in the full basis-set
limit, but can be defined for lattice models. The leads
of an Anderson model are non-interacting and charac-
terized by a total charge, which remains constant. Thus
we define the KS system in this extreme case as that of
a non-interacting junction (U = 0) with an on-site po-
tential chosen to reproduce the on-site occupancy of the
interacting system.

The KS Green’s function in the central region may be
written as

Gs(E) = (E − εs + iΓ)
−1

, (8)

where εs is the KS potential for an electron on the impu-
rity, and is written

εs = ε+ U〈nC〉/2 + εXC, (9)
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where the second term is the Hartree contribution and
the last is the correlation potential (there are no ex-
change contributions). The central region of the An-
derson model has no internal molecular structure so the
KS lead-molecule coupling is Γ [5], ensuring a one-to-one
correspondence between density and potential [23]. For
more complex systems, Γ need not be equal to the KS
lead-molecule coupling.
In a standard DFT calculation, εXC is approximated

as a functional of the density [1]. The occupancy of the
central region is

〈nC〉 = 2

∫ ∞

−∞

dE

2π
Im [G(E)]

<
, (10)

where the “lesser” Green’s function is found using the
Keldysh relation [18]

[G(E)]< = 2if(E)Γ |G(E)|2 , (11)

where at zero temperature, f(E) ≡ Θ(µ−E) and Θ is the
Heaviside function. Inserting the KS Green’s function
and solving Eq. (10) for εs gives

εs = µ+ Γcot
(π

2
〈nC〉

)

, (12)

which defines the KS potential within the Anderson
model. In the broad-band limit, εs only involves occu-
pancy on the central region. The KS transmission is then

T s(E) =
ΓLΓR

(E − εs)
2
+ Γ2

. (13)

Plugging Eq. (12) into Eq. (13), we find that T s(E) is
identical to T (E), as was shown in Fig. 1. Although this
identity can be derived using, e.g., local Fermi liquid the-
ory [4], nonetheless its significance is profound: If (and
only if) a mean-field theory yields the correct occupation
will it yield the correct transmission.
In an Anderson junction, the Friedel sum-rule connects

the transmission at the Fermi energy to the occupancy
at zero temperature. As shown in Fig. 3, the full trans-
mission spectrum of an Anderson junction exhibits three
peaks: Two Coulomb-blockade peaks of width ∼ 2Γ cen-
tered about E ≈ 0 and E ≈ U and a third zero-bias
Kondo peak of width ∼ kBTK pinned at E = µ. In
contrast, the KS-DFT transmission spectrum is a single
Lorentzian of width 2Γ peaked at E = µ. As indicated
in the figure, the KS value is a huge overestimate any-
where more than several kBTK away from µ, implying
that the ground-state KS potential does not accurately
predict transport at temperatures larger than TK or for
bias voltages larger than kBTK/e.
From Eqs. (3), (4), (12) and (13) it is evident that the

HF errors in transmission in Fig. 1 stem from errors in
the occupancies of Fig. 2. When U . Γ, HF yields ac-
curate occupancies and transmissions. But for U ≫ Γ,
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FIG. 3. (Color online) Transmission through an Anderson
junction at fixed µ = 3eV with ε = 0, Γ = 0.5eV and
U = 10eV , so that TK = 2mK [16, 17, 24]. The Doniach-
Sunjic form [25] of the spectral function [26] is used near the
Kondo peak, while the non-singular portion is calculated us-
ing the methods of Refs. [5, 18] with the BA occupancy. Log-
arithmic shifts of the charging resonances are also included
[24]. More sophisticated numerical methods [27] reproduce
the qualitative features shown here.

the HF occupancies lack the distinct steps present in the
BA solution, causing corresponding discrepancies in the
transport. Qualitatively similar errors would be found
with any local or semilocal approximation for the XC
potential, because such approximations are smooth func-
tions of the interaction strength [7]. But the exact KS
potential of an isolated system, infinitely weakly coupled
to a reservoir, displays discontinuous jumps at integer
particle number [10], just as ours does as Γ/U → 0. The
KS potential εs is shown as a function of occupancy in
Fig. 4a for several values of U/Γ. The HF potential is
linear with a slope of U/2. For large but finite U/Γ, the
KS potential is not discontinuous but has steps (of width
∼ Γ/U) corresponding to the plateaus in the occupancy,
becoming discontinuous in the limit. When U/Γ is suffi-
ciently small there is no step in the KS potential and the
HF approximation is accurate.
We now show how the step develops as Γ/U → 0. In

Fig. 4a, εs develops a step of height U at 〈nC〉 = 1 whose
width decreases as Γ/U → 0. Fig. 4b shows ∂εs/∂〈nC〉
in the vicinity of 〈nC〉 = 1. The horizontal and vertical
axes are rescaled to illustrate the scaling behavior of the
step as Γ/U → 0. From the BA solution, as U → ∞ [28]:

εXC ≃ U

2

[

1− 〈nC〉 −
2

π
tan−1

[

π2U(1− 〈nC〉)
8Γ

]]

,

(14)
whose derivative yields a Lorentzian. In Fig. 4b, we show
this limit and how it is approached as U grows, but notice
also that the Lorentzian shape is approximately correct
for all U down to Γ. We thus parametrize the XC poten-
tial for U ≥ Γ by the approximate form

ε̃XC = α
U

2

[

1− 〈nC〉 −
2

π
tan−1

(

1− 〈nC〉
σ

)]

, (15)

where α and σ are functions of Γ/U which → 1 and
8Γ/(π2U), respectively, in the limit Γ/U → 0, and de-
termine the amplitude and width of the correlation con-
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FIG. 4. (Color online) The KS potential εs of the Anderson junction. (a) For U ≈ Γ, HF is accurate; as U grows, an increasingly
sharp step develops, due to the derivative discontinuity of the exchange-correlation energy as a function of particle number.
(b) ∂εs/∂〈nC〉 for several large values of U/Γ. As U/Γ → ∞, the exact (Lorentzian) asymptotic scaling form is recovered.
(c) Exact and interpolated α and σ functions are shown in the left and right-hand panels, respectively, showing the crossover
from the meanfield (U/Γ ∼ 0) to the strongly correlated regime (U/Γ → ∞). The crossover from weakly to strongly correlated
occurs for U/Γ ≈ 6. (d) Exact and approximate ∂εs/∂〈nC〉 spectra for several moderate U/Γ values, highlighting the accuracy
of Eq. (15). The dashed lines use Eq. (16).

tribution as a function of 〈nC〉. Varying α between 0
and 1 corresponds to “turning on” charge quantization,
a nonperturbative interaction effect that would not be
described by any local or semilocal approximation.
To determine those parameterizations, we first note the

behavior near 〈nC〉 = 0, 2 for Γ 6= 0. This is not generic,
but stems from the restricted Hilbert space of the Ander-
son model. For U/Γ → ∞, Eqs. (12) and (10) imply that
∂εs/∂〈nC〉 ∼ Γπ/(2 sin2[π〈nC〉/2]) near 〈nC〉 = 0. How-
ever, 3×10−5[1/〈nC〉4] fits the data most accurately over
the range 0.1 ≤ U/Γ ≤ 500 . Precisely the same form is
applied at 〈nC〉 = 2. Then a least-squares fit of Eq. (15)
to the BA results, subtracting the features at 〈nC〉 = 0, 2
and limiting the fit range to 0.1 ≤ 〈nC〉 ≤ 1.9, yields the
values of α and σ given in Fig. 4c by the points.
We also found simple fits for these functions, with

α =
U

U + 5.68 Γ
,

σ = 0.811
Γ

U
− 0.390

Γ2

U2
− 0.168

Γ3

U3
.

(16)

as shown by the smooth curves in Fig. 4c. The corre-
sponding derivatives are given by dashed curves in Fig.
4d. Eqs. (15)–(16) define an interpolation formula for
the XC potential which yields the exact KS potential in
both the U/Γ → 0 and U/Γ → ∞ limits and is accu-
rate for all intermediate values of U & Γ, as shown in
Fig. 4. To check that our parametrization is sufficiently
accurate, we performed self-consistent calculations using
Eqs. (15) and (16), finding transmissions indistinguish-
able from those with BA occupancies for all values of

U/Γ (see Fig. 2). Our interpolation formula shows that
the cross-over between weak and strong correlation oc-
curs for U ≈ 6Γ.

Our results should prove useful for the development of
density functional theory in general, and for its appli-
cation to transport through molecular junctions. While
much is known of the consequences of the derivative dis-
continuity in the extreme limit of weak coupling, our re-
sults describe the entire range from strong to weak cou-
pling, i.e., from weak to strong correlation. For trans-
port through molecular junctions, our results provide an
important specific case for which both many-body and
DFT approximations can be tested. Nor are these values
of U/Γ just theoretical. For example, for the archetypal
Au-[1,4]benzenedithiol single-molecule junction we find
U > 8Γ, where U is related to the molecule’s HOMO-
LUMO gap [5, 18]. In such a system, any approximate
XC functional which fails to account for derivative dis-
continuity effects is unlikely to yield accurate results.

Note added in proof: After submission of our
manuscript, Refs. 23, 29, 30 (chronological order) re-
porting related results appeared on arXiv. This work
was supported by DOE under grant number DE-
FG02-08ER46496. CAS acknowledges support from
the Department of Energy under Award Number
DESC0006699. KB thanks David Langreth for a decade-
long conversation on the subject, and a lifetime of inspi-
ration.
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