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We report magnetic field orientation-dependent measurements of the superconducting upper crit-
ical field in high quality single crystals of URu2Si2 and find the effective g-factor estimated from the
Pauli limit to agree remarkably well with that found in quantum oscillation experiments, both quan-
titatively and in the extreme anisotropy (≈ 103) of the spin susceptibility. Rather than a strictly
itinerant or purely local f -electron picture being applicable, the latter suggests the quasiparticles
subject to pairing in URu2Si2 to be ‘composite heavy fermions’ formed from bound states between
conduction electrons and local moments with a protected Ising behavior. Non Kramers doublet local
magnetic degrees of freedom suggested by the extreme anisotropy favor a local pairing mechanism.

Our understanding of the mechanisms of pairing in
superfluids [1, 2] and conventional superconductors [3]
is largely contingent upon full characterization of the
fermionic excitations within the normal state. Yet such a
situation is far from realized in unconventional supercon-
ductors in proximity to magnetism [4–7]. At stake is the
issue of whether the superconductivity is best described
in terms of momentum-space [8, 9] or real-space [10–12]
pairing. Complicating matters in rare earth and actinide
superconductors, is the propensity for the coupling of the
conduction electrons to local magnetic degrees of free-
dom to cause the elementary excitations to depart sig-
nificantly from those of regular band electrons [13–15] −
a situation which remains poorly understood in actinide
materials owing to ambiguity as to the relevant magnetic
degrees of freedom [16–21].

In this paper we find that, in spite of the seemingly in-
tractable nature of the electronic structure of URu2Si2,
the behavior of the superconducting upper critical field
in high quality single crystals is decidedly simple. Rather
than fitting directly to a model [22–24], we compare the
estimated effective g-factor of the paired quasiparticles
determined using the Pauli limit [25] against that of the
unpaired quasiparticles determined from spin zeroes in
magnetic quantum oscillation experiments [24, 26]. We
find the two to be in excellent quantitative agreement
over a broad angular range, establishing URu2Si2 as an
ideal example of a Pauli limited heavy fermion super-
conductor. In doing so, however, we uncover a large
effective g-factor with an extreme uniaxial anisotropy
characteristic of a local moment with a protected Ising
anisotropy [17]. We therefore propose the quasiparticles
in URu2Si2 to be ‘composite heavy fermions’ formed from
bound states between the conduction electrons and local
non Kramers doublets [13–15, 27], having implications
both for the nature of the pairing [10–12] and the hidden
order phases [28, 29].

Whereas the bulk magnetic susceptibility of heavy
fermion compounds typically combines several contribu-
tions [15], the heavy fermion state itself is defined only
in terms of the spin susceptibility χ ∝ g∗2eff of itinerant

quasiparicles. Since the composition of the spin degrees
of freedom is a priori unknown, we treat these as pseu-
dospin σ = ± 1

2
quasiparticles with an effective g-factor

g∗eff . Provided these quasiparticles are twofold degener-
ate and retain their internal structure on pairing, we can
use Clogston’s expression [25]

µ0Hp =
2∆√

2 µBg∗eff
(1)

for the Pauli-limited upper critical field, where 2∆ is the
superconducting gap (≈ 0.58 meV in URu2Si2 [30]), µ0 is
the permeability of free space and µB is the Bohr magne-
ton. Figure 1a shows the upper critical field of URu2Si2
measured in samples with a large residual resistivity ratio
(RRR ≈ 400 [26]).
In the case of unpaired quasiparticles in a magnetic

field, the same g∗eff introduces a phase difference between
magnetic quantum oscillations originating from spin split
Fermi surface sheets. Again, provided the quasiparticles
are twofold degenerate at zero field (and have effective
masses m∗ that are independent of spin), the quantum
oscillation amplitude is modified by a simple interference
term [14]

Rspin = cos

[

πg∗eff
2

(

m∗

me

)]

(2)

where me is the mass of the free electron. An anisotropy
in g∗eff causes the argument of this term to become mag-
netic field orientation-dependent, causing the amplitude
to oscillate with angle θ (a schematic representation of
measured data being shown in Fig. 1b), passing through
a ‘spin zero’ each time g∗eff(m

∗/me) is an odd integer.
A total of 16 spin zeroes are observed on rotating the
direction of the field from H‖[100] to H‖[001] [24].
The surprising result here is that by making rather sim-

ple assumptions [implicit in Equations (1) and (2)], the
estimates for g∗eff (shown in Fig. 2) made using two in-
dependent experimental methods are quantitatively con-
sistent over a broad angular range. The comparability of
these estimates both establishes the twofold degeneracy
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FIG. 1: Data used for determining the effective g-factor. (a)
shows the upper critical field Hc2 of the superconducting state
in URu2Si2 determined from the projected onset of resistivity
at ≈ 30 mK (similar to the method adopted by Ohkuni et
al. [24]). An example trace is shown in the inset. (b) shows
a schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [24],
with the indices of the spin zeroes indicated. The plot per-
tains to the dominant α frequency [24], which can be followed
uninterrupted over the entire angular range. In order to show
the oscillatory behavior, the the amplitude here is multiplied
by −1 on crossing each spin zero.

of the quasiparticles and shows that the superconducting
critical field of URu2Si2 corresponds to that of a Pauli
limited paired fermion condensate [25] for all orientations
of the magnetic field − the exception being a narrow
range of angles within ∼ 10◦ of the [100] axis in Fig. 2
(likely associated with the dominant role of diamagnetic
screening currents once g∗eff is strongly suppressed [23]).

The field orientation-dependence of g∗eff in Fig. 2 is no-
tably different from the usual isotropic case of g∗ ≈ 2 for
band electrons (dotted line), indicating the spin suscepti-
bility of the quasiparticles in URu2Si2 to differ along the
two distinct crystalline axes. Since the Zeeman splitting
of the quasiparticles is given by the projection M · Ĥ of

the spin magnetization M = ρ
µ2

B

2
(g2a cos θ, 0, g

2
c sin θ)H

along H = H(cos θ, 0, sin θ) [where ρ is the electronic

density-of-states], setting M · Ĥ = ρ
µBg∗

eff

2
H defines an

FIG. 2: A polar plot of the field orientation-dependence of
g∗eff . The values are estimated using Equations (1) and (2) rep-
resented by open and filled circles respectively. Also shown,
is a fit (solid line) of Equation (3) to g∗eff , and the isotropic
g∗ ≈ 2 (dotted line) expected for conventional band electrons.
In Fig. 1a we assume Hc2 ≈ Hp. In extracting g∗eff from the
index assignments of g∗eff(m

∗/meff) in Fig. 1b, the weakly
angle-dependent m∗ is interpolated from the measured values
in Reference [24].

effective g-factor

g∗eff =

√

g2c sin
2 θ + g2a cos

2 θ (3)

that (in the case of a strong anisotropy) traces a figure of
‘8’ in polar coordinates. A fit to Equation (3) in Fig. 2
(solid line) yields gc = 2.65 ± 0.05 and ga = 0.0 ± 0.1,
implying a large anisotropy in the spin susceptibility
χc

χa

=
(

gc
ga

)2
.

To obtain a lower bound for the anisotropy, we plot
geff (circles) in Fig. 3 extracted from quantum oscillation
experiments [24] versus sin θ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for different

values of χc

χa

=
(

gc
ga

)2
made using Equation (3). The

observation of a spin zero in Fig. 1 at angles as small as 3◦

implies a lower bound χc

χa

& 1000. A smaller anisotropy
would be expected to lead to the observation of fewer
spin zeroes and nonlinearity in the plot with an upturn
in geff at small values of sin θ (see Ref. [31] and Fig. 4).
A large anisotropy in the magnetic susceptibility is the

behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal lat-
tice gives rise to an Ising anisotropy. Kondo coupling
provides one possible means by which such an anisotropy
can be transferred to itinerant electrons [15]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [32]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
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FIG. 3: A plot of geff versus sin θ (circles) in the vicinity of
the cusp in Fig. 2. Lines correspond to the expectation for

different values of χc

χa

=
(

gc

ga

)2

in Equation (3). The straight

line fit corresponds to χc

χa

→ ∞, while that with χc

χa

= 1000 is
the lower bound compatible with the data. Values 140, 70 and
5 correspond to quoted estimates from the dilute limit [33],
from fits only to Hp [23] and to the measured susceptibil-
ity of pure URu2Si2 [4] (which likely includes non-itinerant
contributions to the susceptibility).

effective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lat-
tice of moments should such partial states overlap and
satisfy Bloch’s theorem at low temperatures [13, 27].
The finding of a large anisotropic impurity susceptibil-
ity ( χc

χa

∼ 140) in the dilute limit of UxTh1−xRu2Si2 [33]
supports the applicability of the Kondo lattice model to
URu2Si2, as does the observation of a Fano lineshape in
scanning tunneling microscopy experiments [34].

While magnetic moments in uranium heavy fermion
compounds are generally regarded to be close to the
5f2 electronic configuration [11, 16–21] (i.e. with 2 f -
electrons per site constituting the moment), 5f1, 5f2 and
5f3 are all capable of producing magnetically anisotropic
low lying doublets in the tetragonal crystal environment
of URu2Si2. The 5f3 configuration can yield a vanish-
ing a-axis susceptibility for a precisely tuned combina-
tion of parameters [33]. However, only the 5f2 configu-
ration can yield non-Kramers doublets in which a van-
ishing a-axis susceptibility is protected by a large differ-
ence (∆Jz = 2) between Jz angular momentum quantum
numbers [17, 29]. A protected anisotropy can also explain
why χc

χa

≫ 100 in both the dilute and lattice limits [33].

On equating the product of the pseudospin and effec-
tive g-factor with the product of the Jz quantum num-
bers and Landé g-factor gL = 4

5
of a 5f2 non Kramers Γ5

doublet, we arrive at

±1

2
g∗ff = (cosα|Jz = ±3 > +sinα|Jz = ∓1 >)gL (4)

(neglecting any possible additional enhancement of g∗eff
by many body effects). The solid line in Fig. 2 is pro-
duced by setting cosα = 0.8, which is comparable to that
(cosα ≈ 0.9) obtained from fits in the dilute limit [33].
Our study implies that neither a strictly localized or

itinerant picture applies to the state of the 5f -electrons in
URu2Si2, which is likely to impact the origin of both the
superconducting pairing and hidden order phases [28, 29].
While band structure calculations often treat the 5f -
electrons as itinerant [35], we find the quasiparticles to
strongly reflect the anisotropy of the local moments de-
termined by the crystal electric field environment. The
nature of the crystal fields in URu2Si2 have been dif-
ficult to pin down using other spectroscopic tools. One
way to understand the quasiparticles phenomenologically
is through the formation of ‘composite heavy fermions,’
which constitute bound states between the conduction
electrons and local moments [27]. The spin degrees of
freedom of the moments become incorporated into the
Fermi surface volume in such a picture, possibly giving
rise to a Fermi surface topologically similar to that found
in itinerant f -electron band structure calculations. The
discovery of such behavior in URu2Si2 suggests the com-
posite heavy fermion picture has a broader range of ap-
plicability than originally envisaged [14, 15].
Finally, we discuss possibilities for the nature of the

superconducting pairing in URu2Si2. One popular no-
tion is that the composite heavy fermions pair in mo-
mentum space in precisely the same way as ordinary spin
1
2
electrons, with the local magnetic degrees of freedom

having little impact on the symmetry of pairing [8, 9].
The finding of non-kramers degrees of freedom and com-
posite heavy fermions, however, lends itself favorably to
an alternative scheme involving local magnetic degrees
of freedom [10–12]. Evidence supporting strong coupling
in URu2Si2 at Tc includes the large value of ∆

kBTc
= 4.5

that exceeds the weak coupling value of 3.5 [30] (where
Tc = 1.5 K is the superconducting transition tempera-
ture), the pseudogap observed above Tc in point contact
spectroscopy experiments [30], and the existence of resid-
ual magnetic entropy contributions to the susceptibility
and Sommerfeld coefficient at temperatures above Tc −
evidenced by the climb in both quantities with decreasing
temperature [36, 37].
In summary, we find surprisingly excellent quantitative

agreement between the spin susceptibility of the paired
quasiparticles in URu2Si2 and that obtained from quan-
tum oscillations of the unpaired fermions over a broad
angular range, providing unambiguous evidence for a
Pauli limited heavy fermion superconductor. The ex-
treme anisotropy of the spin susceptibility found using
two independent measurement techniques also reveals
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FIG. 4: As a consistency check, we plot geff versus sin θ (cir-
cles) in the vicinity of the cusp in Fig. 2 where the assignment

of g∗
(

m
∗

me

)

indices begins at 3 instead of 1 [31], causing all

points to be shifted upwards relative to Fig. 3. In such a
case, one no longer obtains consistent values for gc. From

reading off the last index [at which now g∗
(

m
∗

me

)

= 33] we

obtain gc ≈ 2.9. On fitting Equation (3) through the data
points we obtain gc ≈ 3.2. Neither value is consistent with
g∗eff = 2.5 ± 0.1 estimated from Hc2 at θ ≈ 90◦ in Fig. 2 [31].

URu2Si2 to be a likely example of a system in which
the magnetic properties of the itinerant carriers is deter-
mined entirely by local non Kramers doublet magnetic
degrees of freedom, whose extreme Ising anisotropy is
protected within the tetragonal lattice. A Fermi liquid
composed of unusual heavy composite quasiparticles is
therefore suggested, with the non Kramers doublets be-
ing conducive to a local superconducting pairing mecha-
nism.
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