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Abstract: 

Isotopes fractionate in thermal gradients, but there is little quantitative understanding of this 
effect in complex fluids.  Here we present results of experiments and molecular dynamics 
simulations on silicate melts.  We show that isotope fractionation arises from classical 
mechanical effects, and that a scaling relation based on Chapman-Enskog theory predicts the 
behavior seen in complex fluids without arbitrary fitting parameters. The scaling analysis 
reveals that network forming elements (Si and O) fractionate significantly less than network 
modifiers (e.g., Mg, Ca, Fe, Sr, Hf and U).   
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Recent experiments on silicate melts have shown that isotopes fractionate significantly along a 
temperature gradient, such that heavy isotopes accumulate in the cold end and light isotopes 
accumulate in the hot end.1,2,3,4  The magnitude of this fractionation can be quite large; for 
example, in molten basalt an isotopic enhancement of several tenths of a percent is observed 
for 26Mg with as little as 50 oC difference in temperature.2  Given the precision with which 
isotopic ratios of many elements can now be measured, it may be possible to detect thermally 
driven isotope fractionation in magmatic systems.5 Indeed, the observation of increasingly 
heavier isotope ratios with magmatic differentiation may provide evidence for such an effect.6,7 
However, in order to understand the origin of observed isotopic variations in magmatic 
systems, and use them as tools to infer the magmatic history, it is necessary to understand the 
physical basis for thermally driven isotope fractionation, and the controls on its magnitude and 
direction.  

The physical origins of this isotope fractionation are not well understood.  A phenomenological 
model for this fractionation based on a quantum zero-point effect has recently been put forth,8 
but it is not clear that this model can reproduce experimental results with physically reasonable 
parameters.9  We show here that the fractionation arises from classical mechanical effects, and 
that a simple scaling relation can quantitatively predict behavior in silicate melt systems. 

The steady-state variation in the ratio of a heavy (mass mh) and light (mass ml) isotope along a 

temperature gradient in silicate melts can be characterized by , 

 
 (1) 

where Ch(x) and Cl(x) are the concentrations of the heavy and light isotope at position x, and x0 

is a reference position (our definition of is not on a per mil basis, as is common).  The 
strength of the isotope fractionation at steady state is often expressed in terms of the 
parameter :  

   (2) 

where T0 is the temperature for which = 0.  While  may vary with temperature,10 this 
dependence is found to be small for silicate melts.11 It has been recognized that these values of 

 may depend on mass and the atomic interactions, and an empirical scaling was proposed in 
which  is correlated with the isotope masses, ionic charge and ionic radius.4 

Here we propose a non-empirical scaling that is based on Chapman-Enskog theory.12,13,14,15 This 
is a rigorous theory with the only assumptions being that the interactions between atoms are 
binary elastic collisions described by classical mechanics, and that the interatomic forces are 
spherically symmetric. In Chapman-Enskog theory, the relation for steady-state isotope 
fractionation along a temperature gradient to leading order is12-15 

 
 (3) 

δ̂

1
)()(

)()(
)(ˆ

00

−=
xCxC
xCxC

x
lh

lhδ

δ̂

Ω̂

( )( )0
ˆˆ TTmm lh −−Ω−=δ

δ̂ Ω̂

Ω̂
Ω̂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=
0

0
0

ˆ
T
TT

mm
mm

lh

lhαδ



3 
 

where the value of α0 is predicted to be of order 1. For example, for hard-sphere systems, α0 
=105/118 in the gas dilute limit14 and it increases with increasing density to a value of ~5 for a 
liquid near its maximum density (at the glass transition).15     

We hypothesize that this scaling relation (Eq. 3) describes thermal isotope fractionation for 
complex fluids such as silicate melts.  To stringently test the scaling behavior of isotope 
fractionation, new experiments and molecular dynamics (MD) simulations were carried out.  
The experiments generated results for isotope fractionation of Sr, Hf and U in silicate melts (see 
below for details) – the new data provides a strong test for theory as it expands the range of 
isotope fractionation data to elements covering most of the periodic table.  Our MD simulations 
on liquid MgSiO3 are the first to address isotope fractionation by thermal diffusion in a silicate 
melt.  The MD simulations provide a strong test for the scaling behavior as the simulations must 
be carried out under ‘extreme’ conditions (in comparison to laboratory experiments) in order to 
obtain adequate signal-to-noise for the local isotope concentrations with the relatively small 
number of atoms and short times that are accessible computationally.  In particular, the 
simulations (a) use heavy isotopes that have masses that are 400% of the normal atom, in 
contrast to natural differences of isotopic masses that are typically 5-10% or less; (b) use 
temperature gradients of ∼1011 K/m, in contrast to gradients of ∼104 K/m in experiments; and 
(c) are carried out at mean temperature T0=4000 K, in contrast to experiments carried out at T0 
∼ 1500-2000 K (see below for details).   

The new experimental data presented here come from thermal migration experiments 
performed in the University of Illinois, Urbana-Champaign experimental petrology laboratory. 
The Sr, Hf, and U data represent analyses of solutions derived from dissolving spatially located 
subsamples from the hot melt-rich end of a thermal migration experiment involving a basaltic 
starting material. The experiment was performed at 0.5 GPa by placing a graphite capsule 
containing nominally anhydrous BCR-2 (USGS basalt standard powder) doped with several trace 
elements at 1000 to 2000 ppm levels into the temperature gradient of a ¾” piston cylinder for 
34 days. Using the spinel diffusion profile method to determine the temperatures, we estimate 
temperature over the entire capsule ranged from 1260°C to 800°C. Like previous thermal 
migration experiments, the basaltic starting material evolves to an all melt region at the hot 
end, a middle region of crystals (orthopyroxene, garnet, clinopyroxene and ilmenite) plus melt 
and fine grained crystalline material at the cold end which has not changed greatly in 
composition relative to the starting material. Probably because the lower half of this 
experiment has undergone little chemical transport (it appears to be entirely crystalline), no 
isotope fractionation relative to the starting material is observed such that the calculated 
fractionations used here only apply to subsamples from the upper half of the experiment 
(analogous to the Mg and Fe isotopic variations previously observed16).  The experimental 
charge was cut into 7 equal ~1 mm thick sections and each section dissolved in HF-HNO3 to 
make a master solution for that section. Aliquots were removed for  Sr, U and Hf isotope 
analysis. Sr was purified using standard Sr spec methods with SRM987 also processed 
simultaneously. The purified Sr solution was run in dry plasma mode using a DSN-100 
desolvating nebulizer coupled to a Nu Pasma HR MC-ICPMS (at UIUC) with the chemically 
processed SRM987 used as a bracketing standard between each solution analysis. 84Sr, 86Sr, 87Sr 
and 88Sr were collected and offsets for 88Sr/86Sr between standard and solutions were 
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determined. Estimated precision is 0.015% (2s), much smaller than the total offset observed 
which was 0.237%. Because of interference issues on 84Sr from Kr, we were unable to obtain 
satisfactory analyses of 84Sr/88Sr. Hf was purified using established procedures in the chemistry 
laboratory at the University of Iowa. An Alfa ICPMS Hf solution was used as a bracketing 
standard for dry plasma analyses on the Nu Plasma HR (UIUC). Masses 177, 178, 179, 180 were 
analyzed and mass dependence of the fractionation assessed; appendix figure 1 shows mass 
dependent behavior with the total offset in 180Hf/177Hf across the three samples of 0.098%. This 
is much larger than the estimated precision of <0.005%.  U was analyzed by a double spike 
technique after purification by standard anion exchange methods. The total offset in 238U/235U 
is 0.075%, significantly larger than the estimated precision of 0.01% (2s). More details of this 
experiment and analyses are provided elsewhere.17   

Molecular dynamics (MD) simulations use the classical equations of motion to follow the 
trajectories of atoms as they move under the influence of interatomic forces.  Our simulations 
are carried out for liquid MgSiO3, with interatomic forces parameterized by potentials that have 
previously been shown to accurately model real liquids.18  Our simulations are carried out for a 
system composed of 2160 atoms in a cubic simulation box with length L=3.2 nm (corresponding 
to the density 21830 MgSiO3 moles/m3); periodic boundary conditions are used to remove edge 
effects. The equations of motion are integrated numerically with a time step of 1 fs; simulations 
are run for durations of 68 ns (this long simulation time is needed to obtain sufficient signal-to-
noise to resolve the small differences in the local concentrations for the isotope pairs).  To 
address isotope effects, 23% each of Si and Mg atoms and 8% of O atoms are replaced by 
‘heavier isotopes’ with masses 4 times as large. To generate a temperature gradient, the non-
equilibrium MD method is used whereby a ‘cold slice’ and ‘hot slice’ of the simulation box are 
defined, of thickness d=0.13 nm and oriented perpendicular to the x-axis at x/L=0.25 and 
x/L=0.75, respectively; at each time step an energy Δε=0.2 kBT is transferred from the atoms in 
the cold slice to the atoms in the hot slice, by rescaling the velocities of these atoms.19  The 
simulations were carried out with the GROMACS software package,20 which we modified to 
include the thermal gradient code. 

First, we address the accuracy of our MD simulations and relevance to experiment.  Our MD 

results for δ̂  are compared with experiments in Fig. 1, using the scaling relation of Eq. (3) – the 
agreement is very good, considering that the MD results follow from fundamental physics with 
no fitting of any kind to the experimental results.  This agreement suggests that the properly 
scaled results are not strongly dependent on the values of the atomic mass differences and 
temperature gradients. The MD and experimental results for α0 are compared in Table 1.  The 
MD results correctly reproduce the relative magnitudes of the steady state isotope 
fractionation, with Si < O < Mg. The MD result for O is within experimental error, and the MD 
result for Si is within 30% of the experimental value. The MD result for Mg differs by a factor of 
2.5 from the experimental result (perhaps this larger difference is due to the high temperature 
of the simulations, which would act to make all elements behave more similarly because the 
influence of energetic interactions scales as 1/kT).   

The scaling of Eq. (3) is tested in Fig. 2 using all available data for silicate melts – these results 
include experimental fractionations of Si, O, Fe, Mg, Ca in supraliquidus basaltic to andesitic 
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liquids and subliquidus andesite from refs. 1-4, our new data for Sr, Hf and U in subliquidus 
basalt, and our MD results for Si, O and Mg in MgSiO3.  This wide range of data largely collapses 
when the scaling of Eq. (3) is applied. It is noteworthy that the same scaled fractionation occurs 
whether the system is at super- or sub-liquidus conditions and regardless of the direction of 

chemical fluxes.  Table 1 gives the values for α0 and  (by comparing Eqs. (2) and (3), 

).  The range of α0 values in silicate melts, 0.5 < α0 < 3.5, is very similar to 

that from Chapman-Enskog theory for hard-sphere systems, i.e. 1 < α0 < 5.15  Furthermore, 
there is a distinct difference in the values of α0 for network formers (Si and O) and network 
modifiers (Mg, Fe, Ca, Sr, U, Hf), with smaller values for the network formers and little variation 

within each of these two groups; this difference is not evident in terms of the values of . 

Since both Chapman-Enskog theory (even when evaluated for hard-sphere systems) and MD 
simulations give quantitative agreement with experiment with no adjustable parameters, it can 
be concluded that the origins of isotope fractionation lie in the classical mechanical collisions 
between pairs of particles (and are not solely a product of quantum effects, as has been 
suggested8). The mathematical complexity of the Chapman-Enskog analysis obscures the 
underlying physical picture.   

Therefore, we use a simpler system to demonstrate the origin of the effect. Consider a head-on 
collision between a heavier atom and lighter atom with short-ranged interactions. We can 
define a persistence fraction, p, as the fraction of the collisions in which the motion of an atom 
persists in the same direction after the collision.   From simple considerations following from 
the conservation of energy and momentum, it can be shown that the motion of the heavy atom 
may persist in the same direction if its velocity is sufficiently high, but the light atom can never 
do so.  We consider the collision of a heavier (h) and lighter (l) particle in one dimension, where 
the interparticle interaction is of finite interactions.  The collision satisfies the conservation of 
momentum, 

 0,0,,, llhhfllfhh vmvmvmvm +=+   (4) 

and the conservation of energy,  
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where mk, vk,0, and vk,f  are the mass, initial velocity, and final velocity of particle k (the initial 
and final velocities correspond to positions at which the particles are farther apart than the 
range of their interaction).  The final velocities can be determined from these two conservation 
equations, 
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(and an analogous equation holds for the light particle).  The motion of the heavier particle 
persists in the same direction after the collision when the initial velocities of the two particles 
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  (7) 

(note the lighter particle can never persist in the same direction).  In a fluid at temperature T, 
particles have a distribution of velocities – thus there will be a probability ph that the motion of 
the heavy particle persists in the same direction after a collision.    The velocity distribution is a 

Gaussian function with mean of zero and standard deviation  (the Maxwell 

distribution in one dimension).  Using the fact that the probability distribution for the ratio of 
two Gaussian distributed variables is described by a Cauchy distribution,21 the probability that 
the criterion in Eq. 7 is satisfied is given by the cumulative Cauchy function,  

  (8) 

which can be simplified in the limit that  is small, to yield 

  (9) 

Eq. 9 shows that the motion of a heavier particle is more likely to persist in the same direction 
after a collision with a lighter particle when it comes from a region with higher temperature.  
While this analysis was for a one-dimensional collision involving only two particles, evidence for 
the higher persistence fraction of heavier atoms has been found in MD simulations of bulk 
systems, via differences in the velocity autocorrelation function.22  For lighter isotopes, the 
velocity autocorrelation function became negative at intermediate times, due to the recoil after 
a collision.  In contrast, for the heavier isotopes the velocity autocorrelation function never 
became negative, showing that recoil after a collision occurred less frequently for the heavy 
isotope.   

This mass-dependent persistence effect can be visualized by an analogy to American football – 
in a collision between a (heavier) lineman and a (lighter) cornerback, the lineman can push his 
way through the cornerback if he has enough speed.  In the same way, Eq. (9) shows that it is 
more probable that a heavy particle will move from the hot side to the cold side than vice 
versa. For this reason, the cold side will become enriched in heavy isotopes, leaving the hot side 
enriched in light isotopes, as has been found in all experimental studies.  

This material is based upon work supported by the National Science Foundation under Grant 
Nos. EAR-0944238 and EAR-1019749 (to DJL and JAV), EAR-1019887 (to CEL) and EAR-1019632 (to 
CCL). We thank the Ohio Supercomputing Center for computational resources used in this 
study.  
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Table 1. Summary of experimental isotope fractionation results.  For comparison, the MD 

results are α0(Si)=0.77, α0(O)=0.88, α0(Mg)=1.3.  

Element α0 (dimensionless) x105 ( C-1 amu-1) 
18O (K,D) 0.53 .95 
30Si (R,B) 0.61 .60 
18O (K,B) 0.70 1.25 
18O (R,B) 0.90 1.50 
18O (K,A) 0.93 1.65 
238U (P) 1.60 0.23 
180Hf (P) 1.78 0.34 
57Fe (H,F) 2.09 1.04 
57Fe (R,B) 2.13 1.10 
57Fe (H,A) 2.14 1.13 
88Sr (P) 2.25 0.88 
44Ca (H,B) 2.30 1.52 
44Ca (R,B) 2.37 1.60 
26Mg (H,A) 2.65 3.09 
57Fe (H,P) 2.81 1.41 
57Fe (H,B) 2.82 1.42 
26Mg (R,B) 3.17 3.60 
26Mg (H,B) 3.49 3.87 
 
(P) Present results; T0=1470 K for Sr, Hf, U; T0=1270 K for H. 
(R, B) Basalt composition from Richter et al.2, 3  values quoted in text; T0=1760 K obtained as 
average temperature at which δ passes through zero in Figures 5, 7 of ref. 3. 
(H, A) Andesite composition from Huang et al.4 
(H, B) Basalt composition from Huang et al. 4  
(H, F) Fayalite-Leucite-Quartz composition from Huang et al. 4 
(H, P) Pantellerite composition from Huang et al. 4 
(K, A) Andesite composition from Kyser et al.1; T0=1660 
(K, B) Basalt composition from Kyser et al.1; T0=1640 
(K, D) Dacite composition from Kyser et al.1; T0=1630 
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Fig. 1: Comparison of MD results with experimental results. (a) Si; (b) O; (c) Mg. Filled black 
symbols are MD results.  Open symbols are experimental results: Red= Huang et al.,4 Blue= 
Richter et al.,2,3 Green=  Kyser et al.1   
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(c)
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Fig. 2: Scaled presentation of experimental and MD results for isotope fractionation.   
Key: Open symbols are experimental results, filled symbols are MD results.   

=Si; =O; =Mg; = Fe;  = Ca; =Sr; =Hf;  =U.  
Red= Huang et al.,4 Blue= Richter et al.,2,3 Green=  Kyser et al.,1 Black=new results.  
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