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Using a new technique to directly detect current induced on a nearby electrode, we measure plasma
oscillations in ultracold plasmas, which are influenced by the inhomogeneous and time-varying den-
sity and changing neutrality. Electronic detection avoids heating and evaporation dynamics associ-
ated with previous measurements and allows us to test the importance of the plasma neutrality. We
apply dc and pulsed electric fields to control the electron loss rate and find the charge imbalance
of the plasma has a significant effect on the resonant frequency, in excellent agreement with recent
predictions suggesting coupling to an edge mode.
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Collective oscillations are central to the study of plasmas as they embody the rich physics unique to the plasma
state and provide diagnostics of plasma density and temperature. Ultracold neutral plasmas (UCPs) [1, 2] are a novel
system for the study of collective behavior as they have extremely low temperatures (1-100 K), an inhomogeneous
density and are on the border of strong coupling. Previous experiments on UCPs have observed plasma oscillations
[3], Tonks-Dattner resonances [4], ion acoustic waves [5, 6] and a high-frequency electron drift instability [7].

Like most laser-produced plasmas, UCPs are freely expanding systems. External fields can force varying rates of
electron evaporation, which gives a time-dependence to the global neutrality, an important feature of these systems
that has only recently been explored [8, 9]. A recent theoretical study of plasma oscillations [9], the simplest collective
mode, considered the impact of electron loss and predicted the existence of a zero-temperature mode with a resonant
frequency that increases for less neutral plasmas. The theory assumed a spherically symmetric electron spatial
distribution, ne, but we have found a significant asymmetry in typical experiments [8] and the effect of this on
electron oscillations has not been addressed.

Here, we excite and detect plasma oscillations of an UCP taking into account the changing density, neutrality and
symmetry of ne. We find the variation of the resonant frequency with neutrality agrees well with the predictions
of [9]. In addition, we have developed a new diagnostic for UCPs where we directly detect oscillations through the
current induced on a nearby electrode. The method is more accurate than previous measurements based on electron
emission, can be used when charged particle detection is not possible, and gives UCP experiments access to a broader
spectrum of collective modes.

We create a plasma by two-photon ionization of about 106 metastable Xe atoms collected in a magneto-optical trap
[10]. The initial plasma density is roughly Gaussian with an rms radius of 0.3 - 0.6 mm. The initial energy given to the
electrons, Ee, is controlled by tuning the energy of the ionization laser above the ionization limit. After creation, the
plasma loses a few percent of the electrons until a sufficient charge imbalance exists to trap the remaining electrons,
forming a plasma. The plasma expands, driven by thermal electron pressure. The ion distribution, ni, remains
Gaussian, following a self-similar expansion [11] described by σ2

i (t) = σ2
i (0) + v20t

2, where σi is the rms radius of the
ion distribution and the expansion velocity is typically v0 = 50 − 100 m/s, determined by Ee.

Two wire mesh grids located 1.4 cm on either side of the plasma apply a weak electric field (5-10 mV/cm) that directs
evaporating electrons out of the plasma region and onto a microchannel plate detector. A typical electron current
signal including the prompt loss of electrons and the electron evaporation during expansion is shown in Fig. 1(a).

UCPs are small systems, consisting of only 104 − 109 ions and electrons and sizes of 0.1 mm to 1 cm, so available
experimental probes have been limited. Optical absorption and fluorescence imaging of the plasma ions [12, 13]
have provided spatially resolved density and velocity measurements of the ions. Information about the electrons has
predominantly been obtained by monitoring the loss rate on a charged particle detector as described. This method
of electron detection has succeeded in observing plasma oscillations [3, 4], but only indirectly by applying a constant
driving field that resonantly heats the electrons and observing an enhanced loss rate. Thus the measurements are
subject to the dynamics involved with heating the electrons and their subsequent evaporation.

We present a new approach to studying electron resonances in UCPs by directly measuring changes in the rf field.
Measurements of rf absorption are commonplace in low density laboratory plasmas. Most analogous to our system
are measurements of zero-temperature oscillations in non-neutral plasmas trapped in Penning traps [14–17]. These
plasmas are typically of similar size and density to our neutral plasmas, but our rapidly expanding plasmas are
untrapped so the measurements must be made during the fast time evolution of the plasma density. Our resonances
last only a few µs, about 100 times shorter than the averaging times used for non-neutral plasmas.

We detect plasma modes by applying a weak, continuous rf drive at frequency ωrf to the grid located above the
plasma and monitor the amplitude and phase changes of the voltage coupled to the symmetric grid below, Vb, as
sketched in Fig. 2. In the absence of a plasma, Vb is constant in time and simply related to the electrode geometry.
When a plasma is present and driven near a resonant frequency, the oscillation of the plasma induces a current on
the bottom grid that interferes with the background signal. The signal from the plasma is much smaller than the
background, so we observe only small changes in the amplitude and phase of Vb as the plasma density quickly scans
through resonance with the driving field. The results of both quadratures of this homodyne measurement are shown in
Fig. 1(a). All measurements are done with ≥ 400 kHz bandwidth, sufficiently large to capture the fast changes in the
rf signals. Due to this large bandwidth and small particle number, the signal-to-noise ratio on a single experimental
shot is often less than 1, so all plots are an average of at least 150 shots.

We qualitatively reproduce the shapes of the rf signals using a circuit model that treats the plasma as a series RLC
oscillator in close analogy with [14]. This shows that a peak in the phase-change signal corresponds to the time at
which the plasma is resonant with the applied field, and thus we will focus on this signal in the remainder of this
paper. A more detailed analysis could also provide information about mode damping and the electron temperature.

Figure 1 shows the comparison of the rf measurements with the previously employed enhanced electron emission
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FIG. 1. Comparison of rf signals to electron signals. (a) The dotted and solid black lines are the electron emission signals
with and without a f = ωrf/2π = 14 MHz rf field applied. The rf phase and amplitude signals are the difference of the signal
obtained with and without the plasma, have been rescaled by the same arbitrary factor and are offset for clarity. (b)-(d) Rf
phase change compared to subtracted electron signal for three different frequencies.
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FIG. 2. Schematic for homodyne detection of plasma oscillations.

method. The earliest-time peak in both the rf and electron signals is the zero-temperature plasma resonance. For
large plasmas and higher ωrf , we routinely see extra peaks at later time in the electron signal, e.g. three peaks in
parts (a) and (b) of Fig. 1, that were previously identified as temperature-dependent Tonks-Dattner resonances [4].
We have difficulty resolving more than one extra peak in the rf signals. For larger driving amplitude we can resolve
a total of three peaks in the rf signals, but the third is a factor of 10 or more smaller in amplitude than the first. We
anticipate that a higher signal-to-noise measurement would allow us to see more of the modes. Molecular dynamics
simulations [18] have also found multiple peaks in the rf absorption in UCPs, but a detailed understanding of these
modes is still lacking. We focus our analysis on the zero-temperature resonance.

The resonance times in the two methods agree to within 1 µs in most cases, after correcting for a delay due to finite
bandwidth. There is disagreement at low ωrf (< 6 MHz), where the electron signal becomes less reliable. The electron
signal measures evaporation caused by rf heating, but we should not expect a linear relationship between energy
absorption and electron emission. As the heating begins and electrons are lost, the plasma potential well deepens, so
a greater input energy is needed to subsequently maintain the same electron flux. This effect is most evident at low
frequencies as the plasma response becomes much broader in time. By contrast, the rf signals measure an induced
current that is directly proportional to the amplitude of electron oscillations.

To understand the cold plasma resonance, we consider the full picture of the spatial distribution of electrons. Optical
measurements of the plasma ions have shown that ni remains Gaussian throughout expansion [11]. At the center of
the plasma, ne must be nearly equal to ni, but electron loss ensures deviations at the plasma edge. Bergeson and
Spencer [19] solved the cold plasma fluid equations for a perfectly neutral plasma (ne = ni in all space), assuming
no electron loss, and found only a single quasi-mode with a maximum energy absorption at a frequency ω = 0.24ωp0,

where ωp0 =
√
e2ne0/meε0 and ne0 is the central plasma density. But even early in the plasma lifetime the deviation

from neutrality may be non-negligible, owing to the prompt loss of electrons at plasma creation [Fig. 1(a)]. Lyubonko
et al. [9] allowed for electron loss by treating ne as a truncated Gaussian with the truncation radius set by the charge
imbalance δ = (Ni−Ne)/Ni, where Ni and Ne are the number of ions and electrons. For plasmas with any significant
charge imbalance (δ ≥ 5%), they found a mode where the majority of energy was absorbed near the sharp edge of
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FIG. 3. Edge-mode theory compared to free expansion and pulsed emission data. The edge-mode and quasi-mode remnant
curves are from [9]. Blue points with error bars are the average of many free expansion measurements. Red points are individual
measurements after pulsed electron emission. Results are the combination of many experimental runs all with Ee/kb = 100 K
and 6 × 105 < Ni < 106.

FIG. 4. Electron distributions with δ = 0.53. The shaded region represents the Gaussian ion distribution. Cold electron
distributions match ni inside the boundary lines and drop sharply to zero outside. The solid line is the symmetric electron
boundary from theory. The dashed line is the electron boundary during free expansion and the dotted line is the boundary
after a pulsed emission of electrons, both of which have an asymmetry caused by the external field, Eext.

the cold electron distribution. The relative frequency of the edge-mode resonance, ωrel = ω/ωp0, increases with δ as
shown in Fig. 3.

We perform two types of experiments to test the edge-mode prediction. First, we record the resonance times from
the rf phase change signal during normal free expansion of the plasma. Figure 1 shows typical measurements for
different ωrf . For smaller ωrf , the resonances are observed later in time, corresponding to a lower density. But due
to the continuous electron loss, later time also corresponds to larger charge imbalance, which should increase the
relative resonant frequency. We fit a Gaussian to the first peak of the rf phase change to get the resonance time.
We independently measure the plasma expansion velocity and ion number, which allows us to calculate the relative
resonant frequency ωrel. The charge imbalance is calculated by integrating the electron signals. Only a small 10-15
mV/cm electric field is needed to collect all plasma electrons on our detector. The fraction of the integrated current
that arrives before the resonance time gives the charge imbalance δ. The results are shown in Fig. 3.

A potential problem with this test is that we expect ne in the experiment to have a different shape than the
symmetric truncated Gaussian used in theory. We have found that ne in a freely expanding plasma can develop a
strong asymmetry from the influence of externally applied or stray dc electric fields, and we intentionally apply such
a field to facilitate electron detection. This field perturbs ne, which we have used to explain the observed rate of
electron loss from our system [8]. The difference between our calculated ne and the symmetric case for the same
charge imbalance is shown in Fig. 4.

In a second experiment, we dump electrons from the plasma with short voltage pulses of 0.5-2 µs, chosen to be
longer than the electron collision time. This creates an ne (dotted line in Fig. 4) that is closer to the symmetric
distribution used in theory and gives more control over δ. Fig. 5 shows examples of the electron emission signal with
pulses applied.
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FIG. 5. Electron signals (left) and rf phase change signals (right) with a voltage pulse of 1 µs length and varying amplitude
applied at 40 µs. The applied frequency is f = 4 MHz.

Before the voltage pulse, we assume a Gaussian ni and an asymmetric ne, like the dashed line in Fig. 4. After the
pulse, the remaining electrons will be concentrated mostly at the center of ni. The dc electric field will still polarize
the plasma, but the electrons are now held in a deep well and there are not enough to reach the edge of the ions.
Electron emission ceases for 10 to 20 µs. As the plasma continues to expand, the well depth decreases and ne slowly
becomes less symmetric until it again reaches the edge of ni and electron emission returns. We can calculate ne after
a pulse using the same algorithm used in [8] but fixing the value of δ. Fig. 4 shows one example result.

The drop in Ne must affect the ion expansion, as the ions outside of the electron cloud are free to move in response
to both the external field and their own interactions without electron screening. For larger electron dumps, the density
of free ions is large enough that a significant Coulomb explosion occurs and disrupts the following neutral plasma
expansion. The electron signal following a pulsed emission is an indicator of the effect of this Coulomb explosion on
the plasma. Since the electron loss rate is related to the size and shape of the ion cloud, an electron signal very similar
to that during normal free expansion indicates a minimal change in plasma expansion. As shown in Fig. 5, we can
for lower voltage pulses get excellent agreement in the late-time electron signals.

For a given voltage pulse, we adjust ωrf and look for resonances in the rf phase change during the dead time of
electron emission, as shown in Fig. 5. When we are near a resonance, a clear peak is observed that we identify as the
edge-mode resonance. Changing the strength of the voltage pulse dumps more electrons, increasing δ, but leaves all
other parameters unchanged. We see that this direct change in δ increases the time of resonance, which corresponds
to an increase in ωrel as predicted.

The data in Fig. 3 are created by applying voltage pulses at many times during expansion. At each time, we sweep
ωrf to find resonance peaks that come just after the pulsed emission. We calculate ωrel from the resonance time
assuming an uninterrupted ion expansion, and we only plot points where the observed peak comes within 7 µs of the
end of the voltage pulse. To get to higher δ we wait until later time in the expansion, letting the plasma naturally
lose more charge, before applying the pulse. During pulsed emission, we pulse the electrons away from the detector
but still collect all other electrons. We find δ by comparing the integrated current after the time of resonance to the
full integrated current in the free expansion experiment.

It is clear from Fig. 3 that the free expansion and pulsed experiments agree with each other and the edge-mode
theory. Agreement in the free expansion data is worst at large δ, but these rf signals are very broad, spanning 10s
of µs. Significant changes to collision rates and significant electron loss during the response time may affect the
magnitude of the rf signal and distort the results. The pulsed emission experiments give us control over δ, and we
can more easily probe large values. It is unclear why the rf signal after a pulsed emission has a stronger and sharper
response than during free expansion.

The importance of the shape of ne is also not immediately clear. During free expansion, we expect ne to be more
asymmetric than the distribution after a pulsed emission, yet both measurements seem to agree equally well with the
perfectly symmetric theory, suggesting that the spatial distribution of charge is only of secondary importance to the
integrated amount of charge. It seems surprising that the position of the electron cloud edge is not a larger factor
given the finding in [9] that the large majority of energy is absorbed at this edge. It would be interesting to see how
the solution of the cold plasma fluid equations changes for the asymmetric distributions of Fig. 4.

In conclusion, we have shown detailed measurements of cold plasma oscillations in an expanding ultracold plasma
with a time-varying ne. Both of our experimental approaches support an increase of resonance frequency with charge
imbalance, in agreement with a zero-temperature theory. We have also presented a new diagnostic tool for probing
oscillations in ultracold plasmas that is more accurate and more versatile than the previous method.

An important feature of our new measurement is that it allows us to probe electron properties through their
resonant behavior without the need for charged particle detection. This advantage was evident in our ability to
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observe resonances during the dead time in electron emission. Charged particle detection is also prevented when a
magnetic field is applied transverse to the axis of the electric grids. We have observed upper hybrid resonances in this
setup, which will be the subject of future work.

We have, in some regimes, also been able to observe the free decay of electron oscillations after abruptly turning off
the rf drive. Studying mode damping should provide information on the collision properties and electron temperature
in UCPs. It is worth noting that we observe plasma resonances at much later times than are normally studied in
UCPs. At 90 µs, the plasma density has dropped to 2 × 105 cm−3, but we can still observe clear collective behavior,
which is a testament to the extremely low electron temperature, expected to be less than 1 K at that time.

We thank A. Lyubonko, T. Pohl and J. M. Rost for helpful discussions and R. A. Perrotta for technical assistance.
This work was supported by the NSF PHY1004242.
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