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Abstract

Within non-relativistic quantum mechanics, spatial cusps in initial wavefunctions can lead to

non-analytic behavior in time. We suggest a method for calculating the short-time behavior in

such situations. For these cases, the density does not match its Taylor-expansion in time, but the

Runge-Gross proof of time-dependent density functional theory still holds, as it requires only the

potential to be time-analytic.
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Within the Born-Oppenheimer(BO) approximation and non-relativistic quantum me-

chanics, a vast amount of useful information (such as geometry, thermodynamics, and vi-

brations) of a molecule or solid can be extracted from the electronic ground state. But

electronic excitations are important for many areas, from photochemistry to photoemission

spectra[1]. Ground-state density functional theory(DFT)[2–4] has been very successful for

the former problem, and its time-dependent analog (TDDFT)[5] has become popular for the

latter[6]. Within linear response, TDDFT yields useful predictions for the excited states of

many molecules[1], and extensions to solids are a keen area of research[7, 8].

All density functional theories rely on a one-to-one correspondence between the one-body

potential, such as −Z/r for an atom, and the density n(r), under some restrictions. For

ground-state DFT, the particle statistics and interaction are fixed. For the time-dependent

case, one also specifies the initial wavefunction. The original proof in the ground-state case

of Hohenberg and Kohn[2] has been refined over the decades[9–11], but its essence remains

unchanged. In the time-dependent problem, after pioneering works by others[12–18], Runge

and Gross[5] gave a proof assuming the one-body potential is time-analytic, i.e., equals its

Taylor expansion in time around the initial time, for a finite time-interval. Despite recent

attempts[19–23], no generally applicable proof has been found that avoids this expansion.

Modern DFT calculations employ the Kohn-Sham scheme[3], in which a fictitious set

of non-interacting electrons reproduces the one-electron density of the real system. If we

assume that time-analytic potentials yield time-analytic densities, van Leeuwen[24] gave a

constructive procedure for finding the TD KS potential for a given system, a problem that has

not yet been generally solved for the ground-state case. But, in the usual treatment, matter

has cusps in its ground-state electronic wavefunctions at the nuclei, and the resulting spatial

non-analyticities are coupled to the time-dependence in the TD Schrödinger equation[21].

Even in the most mundane example, a hydrogen atom in a suddenly switched electric field,

this coupling leads to non-analytic short time dynamics, and its density is not time-analytic.

We develop a method for extracting the exact non-analytic short-time behavior of the

Schrödinger equation in the presence of cusps. There are distinct spatial regions with dif-

ferent asymptotic behavior for short times, and by ‘asymptotic behavior’ we mean a series

expansion around the initial time t = 0, whose error vanishes as t → 0+. We calculate the

exact short-time behavior for a hydrogen atom in an electric field, and demonstrate agree-

ment with linear response theory in the limit of weak fields. The constructive procedure for
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the TD KS potential fails for our examples. (In DFT-speak, the v-representability question

is not solved.) Nonetheless, the original proof of Runge and Gross remains valid.

Consider a single particle prepared in a field-free ground-state, ψ0, placed in a static field

which is turned on at t=0, and remains on indefinitely. The exact TD wavefunction is:

(atomic units(a.u.) e2 = ~ = me = 1/(4πǫ0) = 1 are used if not mentioned otherwise)

ψ(r, t) =
∑

j

cj exp(−iǫjt)φj(r), (1)

where ǫj and φj(r) are the eigenvalues and functions of the Hamitonian operator Ĥ , and

cj = 〈φj|ψ0〉. We define the time-Taylor series

ψTE(r, t) =

∞
∑

p=0

cp(r) t
p, cp(r) =

∑

n

cn
(−iǫn)p
p!

φn(r), (2)

which is the result of the usual practice of Taylor-expanding (TE) the time-evolution oper-

ator:

Û(t) = 1− iĤt− Ĥ2t2/2 + · · · . (3)

In many cases, the solutions agree, but not necessarily when the wavefunction has non-

analyticities in space. Although ψTE formally solves the TDSE, it may not be a valid

solution. Holstein and Swift[25] reported failure of the TE solution in a model system,

in which ψ0 has compact support (all space-derivatives of ψ0 vanish at the boundary).

However, such cases do not occur in routine electronic structure calculations, and may not

be of concern in practice. For the rest of this paper, we focus on the ubiquitious cusp in

ψ0(r) at a nucleus.

Begin with a simple example. Start from the ground-state wavefunction of the hydrogen

atom,

ψ0(r) =
Z3/2

√
π

exp(−Zr). (4)

Our potential for t ≥ 0 is simply zero: The nucleus has been instantaneously vaporized. The

exact TD wavefunction can be found by applying the free-particle TD Green’s function to

ψ0(r), yielding

ψ(r, t) =
Z3/2eiZ

2t/2

2
√
πr

[f(r, t)− f(−r, t)], (5)

where f(r, t) = (r + iZt) exp(Zr) erfc[(r + iZt)/
√
2it]. Fig. 1 shows the exact solution and

the power-series solution as in Eq. (2), which can be summed to all orders:

ψTE(r, t) =
Z3/2

√
π
e−Zr+iZ2t/2(1− i

Zt

r
), r > 0. (6)
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The TE density diverges as r → 0 and so is invalid.
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FIG. 1. TD exact density and TE density of the ground-state wavefunction of hydrogen atom

under free-propagation.

Our method begins with introducing reduced variables:

s = Z
√
t, r̄ =

r√
2t
, (7)

where the powers are motivated by the previous example, and constants chosen for conve-

nience. The form of these reduced variables is closely connected to the Schrödinger equation

being 1st order in time but 2nd order in space.[30] These reduced variables are appropriate

if the system contains only one nucleus placed at the origin. In reduced variables, the TDSE

becomes
{

L − is∂/∂s + 2s2v/Z2
}

ψ = 0, (8)

where

L = −∇̄2/2 + ir̄ · ∇̄, (9)
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Z is the nuclear charge, and v is the external potential. In the disappearing-nucleus case, ψ

is equal to its Taylor-expansion in powers of s for fixed r̄, and thus we try:

ψ(r̄, s) =

∞
∑

p=0

ψp(r̄) s
p, (10)

yielding:

{L −mi}ψm(r̄) = − 2

Z2

m
∑

p=0

vp−2(r̄)ψm−p(r̄), (11)

where v(r, t) =
∑

p vp(r̄) s
p. Each power of s in ψ produces a second-order differential

equation for a function of r̄. The initial wavefunction in reduced variables is ψ0(
√
2r̄s/Z).

For finite values of r, as s → 0, r̄ → ∞, so its expansion as s → 0 determines the large r̄

behavior of the ψm(r̄).

To find the leading non-analytic behavior in t due to a cusp, we rearrange the TE solution

of Eq. (2) in terms of the reduced variables s and r̄, and test its validity power by power

in s. Each ψTE
m must satisfy the differential equation, the boundary condition derived from

the initial wavefunction as r̄ → ∞, and remain finite at the nucleus (m being the order of

the s-expansion). We do this recursively, until we find k, the lowest value of m for which

ψTE
k fails. Define

ξ(r̄, s) = ψ(r̄, s)− ψTE(r̄, s) (12)

and solve the differential equation for ξk(r) to find the leading non-analytic behavior due to

the cusp.

This can be quite demanding as, in 3D, the equation is a partial differential equation.

A simple approach is to perform a local analysis using the method of dominant balance[26]

to generate an asymptotic series in inverse powers of r̄. Repeated application yields the

series to all orders, but this is insufficient to ensure that ψ remains finite at the r = 0. This

difficulty can be overcome by performing a Borel resummation of the asymptotic series[26]

to find the exact solution. The conditions where Borel resummation works are discussed in

[27].

As a second example, we consider a hydrogen atom in a suddenly switched electric field

which stays on indefinitely, the initial wavefunction is that of Eq. 4, and the potential after

t = 0 is

v(r) = −Z/r + E z, (13)
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where E is the amplitude of the electric field. This situation is covered by the Runge-

Gross theorem as a potential that is analytic in time (in fact, constant) with an initial

wavefunction that is not its instantaneous ground state. The time-dependent dipole moment

µ(t) determines the photoabsorption of the atom via

σ(ω) =
4πω

c

∫

∞

0

dτ

[

∂µ(t)

∂t

∣

∣

∣

∣

t=τ

]

sin(ωτ), (14)

known analytically[28, 29] for the H atom as E → 0.

To apply our method, we first calculate the TE wavefunction order-by-order. We find

each term satisfies both the differential equation and boundary conditions until the 4th

order:

ψTE
4 =

Z3/2

24
√
π
(−3 + 12ir̄2 + 4r̄4) + E iz̄

12
√
πZ3/2r̄3

(1 + 6ir̄2 + 24r̄4), (15)

which works except that it diverges at the nucleus. Assume a correction of the form:

ξ4 = exp(S(r̄)) z̄, (16)

because the applied field is linear in z. This yields an ordinary differential equation for S:

S ′′ + (S ′)2 − 2ir̄S ′ + 4S ′/r̄ + 6i = 0, (17)

and applying the method of dominant balance recursively, one finds the asymptotic expan-

sion:

ξ4 = c1

(

r̄3 +
9ir̄

2
− 9

4r̄
+

3i

8r̄3

)

+ c2
eir̄

2

r̄8

[

1 +
1

r̄2

∞
∑

m=0

(−i)m+1(m+ 4)(2m+ 6)!

(m+ 1)!22m+5 · 9r̄2m

]

. (18)

Since ψTE
4 satisfies the boundary condition at large r̄, ξ4 must vanish here, and c1 = 0. But

this asymptotic series does not yield the small r̄ limit. To find this, we perform a Borel

resummation, yielding

ξ4 = c2
1 + i

72r̄3

[

(2 + 2i)eir̄
2

r̄(−3 + 16ir̄2 + 4r̄4)

−
√
2π(3i− 18r̄2 + 36ir̄4 + 8r̄6) erfc

(

1− i√
2
r̄

)

]

(19)

Requiring ψ4 to remain finite yields

c2 = (1− i)E/(2πZ3/2). (20)
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One can easily check analytically that ψ4 = ψTE
4 + ξ4 is then the unique solution to Eq. (11)

for m = 4.

With ψ4, we find the leading half-power of the wavefunction by changing the variables

back to (r, t) and taking the asymptotic expansion around the t = 0. The leading time-half-

power is then

− (8− 8i)EZ5/2eir
2/2t cos θ

πr7
t11/2, r ≫

√
t, (21)

and one can show ψm>4 contributes to higher order time-half-powers by the method of

dominant balance. This is also the lowest order in t at which rapid non-time-analytic

oscillations of the phase appear.

Our derivation applies for any value of E . The one-body potential appears linearly in our

equations for ψn(r̄), and only for n ≥ 3. Thus if ψ4(r̄) produces the leading non-analytic

behavior in t, then this behavior is linear in E , and is determined exactly by linear response

theory. (Higher-order effects in E produce changes in other terms, but not the leading non-

analytic short-time behavior.) To see this, take the Lehmann representation of the Green’s

function of the hydrogen atom and evaluate the change in the wavefunction to first order in

E . We did not find a closed-form, but the stationary phase approximation to the integral

over the wave number yields the leading half-power term in agreement with our short-time

result Eq. (21).

The leading half-power term in the induced dipole moment calculated using linear re-

sponse theory yields:

µ(t→ 0+) ∼ · · · − 256Z5/(2835
√
π) t9/2 + · · · . (22)

Its Fourier transform yields the known high-frequency decay of the photoabsorption cross-

section[28]

σ(ω → ∞) ∼ 16
√
2Z5π/(3cω7/2). (23)

Thus the cusp at the nucleus leads to fractional powers in time-evolution and fractional

powers in frequency decay.

The leading half-power term in σ(ω → ∞) calculated with ψ4 differs from Eq. (23) by

a factor of 2. In calculating σ(ω) from ψ(r, t), one must integrate over r, and the coupling

between r and t in ψ (as seen in ψ4) allows higher order terms in the s-expansion to contribute

to the leading half-power term in σ(ω → ∞) as well. In this case, ψ4 and ψ5 both contribute

to the ω−7/2 term in σ.
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Before discussing the consequences for TDDFT, we again consider the simpler, but starker

example of the disappearing nucleus case. Our method correctly shows the error appearing

at s1 order, and produces the correct short-time behavior:

ψ(|r| ≫
√
t, t→ 0+) ∼

Z3/2e−Zr

√
π

+
iZ5/2(Zr − 2)e−Zr

2
√
πr

t

− Z9/2(Zr − 4)e−Zr

8
√
πr

t2 − (2 + 2i)Z5/2eir
2/(2t)

πr4
t5/2 + · · · (24)

while its TE contains only integer powers of t.

Although less relevant for TDDFT, our method applies equally well in 1d and proves that

the short-time behavior for the initial state with cusp example in [21] originates from s1 order

and has fractional power t3/2, again with a rapid non-time-analytic phase. Similarly, it’s s4

order for a particle in a delta-well with an applied electric field, and the leading short-time

behavior in ψ is

− (4 + 4i)ǫZ3/2 exp[ix2/(2t)]√
πx5

t9/2, |x| ≫
√
t, (25)

consistent with the known polarizability and its high-frequency limit.[30]

Our results are proven only for single electrons. However, the nuclear potential dominates

over the electron-electron repulsion in the region of the nucleus, so that the cusp condition

on the time-dependent density near a nucleus remains valid regardless of the interelectron

repulsion. Thus we expect the qualitative features (i.e., half-powers of t in the short-time

behavior) to remain true even in the presence of interaction.

We conclude by discussing the relevance of our results for TDDFT, whose theorems

certainly apply (or not) for N = 1. The proof of a one-to-one correspondence[5] shows

that, for two t-analytic potentials whose Taylor expansions first differ in the k-th order,

the difference in the (k + 2)th-order t-derivative of the densities is non-zero. Thus the

two densities differ, the Runge-Gross proof applies, and the potential is a functional of the

density under the conditions stated[5]. Whether or not the TE density matches the true

density is irrelevant.

On the other hand, the KS potential of Ref. [24] produces a density whose t-derivatives

equal those of the interacting density. If we assume that the density is v-representable by a t-

analytic potential (e.g., if the KS and interacting wavefunctions themselves are t-analytic),

then that potential will yield this density. But the wavefunctions are not t-analytic in

the examples given here, and typically are not when an initial wavefunction with a cusp
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undergoes a non-trivial evolution. In general, a more sophisticated procedure is needed to

ensure the constructed potential generates the desired density, and some progress has been

made [21–23]. This is important as the constructive procedure has been invoked or applied

as is to a variety of situations[31–33].

One might argue that real atoms have finite nuclei, or that real molecules and solids have

nuclear wavefunctions that smear the cusps due to nuclei, as well as that most of the practical

TDDFT calculations are done on cusp-free Gaussian basis sets. But such arguments miss

the basic point. Just as in ground-state DFT, time-dependent DFT is an exact mapping of

the quantum mechanics of electrons, for which there are no difficulties within BO or need

for finite nuclei.
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