
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Shape Dynamics and Rheology of Soft Elastic Particles in a
Shear Flow

Tong Gao, Howard H. Hu, and Pedro Ponte Castañeda
Phys. Rev. Lett. 108, 058302 — Published 31 January 2012

DOI: 10.1103/PhysRevLett.108.058302

http://dx.doi.org/10.1103/PhysRevLett.108.058302


LH12909

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Shape Dynamics and Rheology of Soft Elastic Particles in a Shear Flow

Tong Gao1, Howard H. Hu1∗ and Pedro Ponte Castañeda1,2
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The shape dynamics of soft, elastic particles in an unbounded simple shear flow is investigated
theoretically under Stokes flow conditions. Three types of motion—steady-state, trembling and
tumbling—are predicted, depending on the shear rate, elastic shear modulus and initial particle
shape. The steady-state motion is found to be always stable. In addition, the existence of a
trembling regime is documented for the first time in non-vesicle systems, and a complete phase
diagram is developed. The rheological properties of dilute suspensions of such soft particles generally
exhibit shear-thinning behavior, and can even display negative intrinsic viscosity for sufficiently soft
particles.

PACS numbers: 47.57.E-, 47.61.Jd, 83.10.Pp, 47.57.Qk

Microscale soft particles are commonly found in na-
ture and engineering applications. Examples include red
blood cells [1], fluid vesicles [2] and microgel particles
[3]. When placed in a viscous flow, these particles can
readily undergo large deformations to accommodate the
hydrodynamic forces exerted by the fluid, and in turn
have a significant impact on the macroscopic rheological
properties of the fluid-solid mixture.

Because of the thin membranes, or shell-like structures
surrounding them, biological cells and vesicles exhibit
highly complex responses in fluid flows. Thus, it has
been recognized that the membrane-area incompressibil-
ity in vesicles can lead to a rich class of morphologies un-
der shear flow conditions [4–10]. However, other particle
types, such as microgel particles and swollen starch gran-
ules, do not possess surrounding thin membranes, and
have to be modeled differently. For example, it is known
that initially spherical elastic particles admit steady-state
(SS) solutions [11–13] characterized by the balance be-
tween the viscous force in the fluid and the elastic force
in solid. In addition, compared to thin membranes, such
“thick” elastic particles may be expected to be less sus-
ceptible to instabilities induced by ambient flows, leading
to potentially very different dynamical behaviors.

Compared to the extensive efforts that have been de-
voted to understand the response of cells and vesicles in
viscous flows, much less attention has been drawn to elas-
tic particles, and a complete understanding of the effect
of elastic particles in fluid flows is still lacking. One key
challenge in the elastic particle systems is the difficulty in
handling the inherently nonlinear hydrodynamic interac-
tions between the fluid and the solid, particularly in the
large-deformation regime [14]. Recently, we have estab-
lished [15] a large-deformation theory for the response of
an elastic particle in an unbounded Newtonian fluid sub-
jected to a homogeneous remote field, by demonstrating
(see also [12]) that the physical fields (stress, strain-rate,
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FIG. 1: Three types of particle motion under shear at G =
0.2. The solid black lines represent the unsteady TR and TU
motions for initially elliptical (2D) particles, which are com-
puted at ω0 = 0.8 and ω0 = 0.6, respectively. The dashed
black line represent the SS motion of an initially circular
(ω0 = 1) particle [11, 15]. The blue and green symbols are
ALE FEM results (with Re = 0.01). Shape contours are
shown sequentially at times indicated by black squares. The
black dotted line is the particle’s major axis.

etc.) inside an initially ellipsoidal elastic particle are uni-
form, and making use of the well-known fact that an el-
lipsoidal elastic particle subjected to a linear deformation
field (e.g., simple shear) will deform through a series of
ellipsoidal shapes [11–13], with evolving size, shape and
orientation. In this sense, the problem is similar to the
classical Eshelby problem in the theory of composite ma-
terials [16], and was thus solved by means of a polariza-
tion technique originally developed for elasticity [17, 18].

In this Letter, we report on an analytical study of
the dynamics of elastic particles undergoing arbitrarily
large deformation in a simple shear flow. In contrast to
prior studies [11, 12, 15, 19], which assumed that the
initial shape of the elastic particles was perfectly sym-
metric (i.e., spherical, or circular in 2D models), in this
work the particles are taken to have a non-trivial ini-
tial (spheroidal or elliptical) shape. This more general
assumption is shown to give rise to a new type of mo-
tion for the particle—which is different from the steady-
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state (SS) motion observed for initially spherical particles
[11, 12, 15, 19], and also different from the tumbling (TU)
motion for rigid ellipsoidal particles [20]—but somewhat
reminiscent of a certain type of trembling (TR) motion
first observed in vesicles under shear flow conditions [5–
10]. In addition, the conditions determining the TR/TU
transition are identified, and the corresponding critical
behaviors of shape change near the transition are eluci-
dated. Finally, the rheological properties of dilute sus-
pensions of the elastic particles—corresponding to the
three types of motions—are characterized.
We consider an initially ellipsoidal (elliptical) parti-

cle immersed in an unbounded simple shear flow U =
(γ̇x̄2, 0, 0), where γ̇ is the shear rate, and {x̄i} is the fixed
laboratory coordinate system. The particle is assumed to
be a homogeneous, incompressible, neo-Hookean elastic
solid with shear modulus S, while the surrounding fluid
is Newtonian with viscosity η. It is then natural to de-
fine the dimensionless parameter, G = ηγ̇

S
, representing

the ratio of the viscous forces in the fluid to the elastic
forces in the solid. When the particle undergoes a pla-
nar motion in the shear plane (e.g., the x̄1 − x̄2 plane),
the evolution of the system can be described by a set of
coupled, nonlinear, first-order ODEs in a rotating coor-
dinate system {xi} aligned with the particle’s axes for
the aspect ratios of the particle, the orientation angle θ
(defined from the horizontal axis to the long axis of the
particle), and the “extra” stress τ p in the particle (total
minus hydrostatic), as described in [21]. For an elas-
tic particle with initially prolate spheroidal (or elliptical)
shape, the initial conditions are provided by the initial
aspect ratio ω0, which will be taken to be between 0 and
1, the initial orientation θ0, which produces only a time
shift in the results and will therefore be fixed to take the
value π

2 , and τ
p
0 = 0.

For simplicity, we begin with the 2D model problem in-
volving a cylindrical particle with elliptical cross-section.
As illustrated in Fig. 1 for a particle with a fixed value
of G and different values of ω0, three types of motion can
be identified depending on the time evolution of θ. An
initially circular particle (ω0 = 1) becomes elongated and
rotates until reaching a stable configuration with a fixed
orientation [15]. We emphasize, however, that although
the particle shape reaches a SS, material elements inside
the particle undergo a (periodic) tank-treading (TT) mo-
tion. For a slightly elongated particle (ω0 = 0.8), its long
axis oscillates periodically in a TR motion, never making
a full 2π rotation. As the initial shape becomes more
elongated (ω0 = 0.6), the particle switches to a TU mo-
tion, with the long axis now making complete 2π rota-
tions. Comparisons are also shown with direct numerical
simulations (open circles) using an Arbitrary Lagrangian-
Eulerian finite element method (ALE FEM) [19].
For the initially circular particle (ω0 = 1), the govern-

ing equations in 2D can be simplified to two equations for
θ and ω [21], with steady-state solutions given by: ω =
(√

1 +G2 −G
)2
, θ = 1

2 arctan
(

1
G

)

, τp11 = − (τp22)
−1

=

2
(√

1 +G2 +G
)

, τp12 = 0. A linear stability analysis
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FIG. 2: Typical time-dependent solutions for θ at G = 0.2 in
the (a) TR and (b) TU regimes.

leads to the two eigenvalues, λ± = − 1+G2

(1+2G2)G ±
√
1+G2

1+2G2 i

with strictly negative real parts, indicating that the SS
motion is always stable, even for large particle deforma-
tion.
For fixed G > 0, as soon as the initial particle shape

ceases to be circular (ω0 < 1), the particle motion be-
comes TR, and eventually switches to TU for sufficiently
elongated particles (ω0 ≤ ω∗

0). Thus, as shown in Fig.
2(a), the amplitude of the oscillations in θ gradually in-
crease (from 0) as ω0 decreases (from 1), and at the
same time, the transition from the minimum to maxi-
mum values becomes sharper, leading to a discontinuity
at ω0 = ω∗

0 , beyond which the motion shifts into the TU
regime. As shown in Fig. 2(b), θ undergoes complete ro-
tations in the TU regime, with a time period that grad-
ually increases as ω0 continues to decrease below ω∗

0 .
In the TR regime, we can carry out a perturbation

analysis for nearly circular (ω0 = 1 − ε, ε ≪ 1) par-
ticles; i.e., θ = θ(0) + εθ(1) + O(ε2). The zeroth-
order solution θ(0) is the SS solution at ω0 = 1 given
earlier. At the next order, the solution is θ(1) =
eαt [C1 cos (βt) + C2 sin (βt)] + C3 sin (t+Φ), with con-

stants α, β, Ci, Φ. In particular, α = − 1+G2

(1+2G2)G < 0,

which suggests that at large times (t → ∞), the dy-
namics is dominated by C3 sin (t+Φ) and the particle
settles into a periodic orbit with time period 2π, which
is consistent with the plots in Fig. 2(b) for the smaller
values of ε. Likewise, in the TU regime, we performed
another perturbation analysis for an almost rigid particle
(G ≪ 1). It is straightforward to show that the leading-
order solution for θ recovers the classical Jeffery’s orbit
for a rigid particle [20]: tan (θ) = ω0 tan

(

−πt
T

)

, with pe-
riod T = π (ω0 + 1/ω0).
Next, we address in more detail the transition from

the TR to the TU regimes aiming to construct a “phase
diagram” for the particle motion in the parameter space
defined by G and ω0. Before doing so, it is important
to emphasize that the dynamics in this Letter refers to
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FIG. 3: (a) Snapshots of 2D shape contours at five sequen-
tial time instants for G = 0.2, where the TR/TU transition
happens at ω∗

0 ∼ 0.68. The blue and red lines represent two
material lines initially coinciding with the semi-major and
semi-minor axes of the particle, while the dashed black lines
represent the “current” semi-major axis. (b) Bifurcation in
θ near the TR/TU transition for a 2D particle. (c) Phase
diagram for both a 2D and a 3D (initially prolate spheroidal)
particles under shear. Insets in (c): Typical D − θ orbits for
a 2D particle in the two regimes at G = 0.2, 0.3 ≤ ω0 ≤ 0.9.
The arrows show the direction of decreasing ω0.

“shape” dynamics (or morphologies) for the soft particles
[4]. In fact, the material elements in the particle undergo
only one type motion—a continuous TT motion where
the material lines going through the particle center spin
continuously in the CW direction. However, as a con-
sequence of the competition between the hydrodynamic
forces that tend to stretch material line elements instan-
taneously coinciding with the maximum stretch direction
(+π/4) and the restoring elastic forces that tend to re-
sist this stretch, the long axis of the particle in its current
(or deformed) state is not necessarily always the initial
(reference) long axis of the elliptical particle. If, for a
given initial particle shape ω0, the hydrodynamic forces
are not sufficiently strong compared to the elastic forces
in the particle—tending to preserve its initial shape—the
particle will tumble; otherwise, it will tremble (or reach a
steady state if the particle is initially circular). More pre-
cisely, making use of the fact that an initially straight ma-
terial line remains straight in a linear deformation field,
we can visualize the particle motion by tracking two spe-

cial material lines initially coinciding with the semi-major
(A) and semi-minor (B) axes. From Fig. 3(a), both lines
A and B continue to spin in the CW direction. However,
in the TU regime, the length of B (lB) is always shorter
than that of A (lA), while in the TR regime, lA and lB
exceed each other in an alternating fashion. Correspond-
ingly, the current long axis of the particle (dashed-black
line) completes a full rotation in the TU regime, while
it swings back and forth in the TR regime. Clearly, the
critical condition for the TR/TU transition corresponds
to the situation when lB only reaches lA without ever
exceeding it—the current particle shape then becomes
instantaneously circular (ω = 1). The critical behavior
of θ is highlighted in Fig. 3(b) by two different time-
evolution curves for θ at G = 0.2, with ω0 = 0.68, and
0.681. As can be seen by following the 5 sequential time
instants marked with black squares, and corresponding
to the same times shown in Fig. 3(a), a bifurcation in θ
occurs with a jump of either −π

2 (TU) or +π
2 (TR).

Having characterized the TR/TU transition, it is now
a simple matter to construct the (2D) phase diagram,
which is shown in Fig. 3(c) for arbitraryG and ω0. Thus,
as ω0 is reduced from 1 with G fixed, the particle motion
changes from SS to TR, and in turn to TU, as was seen in
Fig. 1. On the other hand, as G is increased for any ini-
tially non-circular shape (ω0 < 1), a transition from TU
to TR is observed. In addition, plots are included as in-
sets in Fig. 3(c) of the D versus θ orbits (where D = 1−ω

1+ω

is the deformation parameter). They show that with de-
creasing ω0 the orbits become larger in the TR regime
tending to a dumbell shape at the transition, and then
to a skew “8” shape in the TU regime. The nature of
the TR/TU transition near the origin can be clarified us-
ing a “mixed” perturbation analysis for a nearly circular
(ω0 = 1 − ε, ε ≪ 1) and almost rigid (G ≪ 1) parti-
cle, with G = kε, for some constant k. Interestingly,
to the leading order, the variables τp11, ω and θ satisfy

the relation:
[

ω
(

τp11 +
1
G

)]2
= 1

k2 − 4(cos 2θ)2 ≥ 0. It
follows that a solution allowing arbitrary values of θ—
and corresponding to a typical TU motion—is possible
for k < 1

2 . On the other hand, for k > 1
2 , a (real)

solution exists only when θ is restricted to the interval
[

1
2 arccos

(

1
2k

)

, π
2 − 1

2 arccos
(

1
2k

)]

, corresponding to TR
motions. Therefore, in the region where both G and ε are
small, the condition for the TR/TU transition is simply
G∗ = 1−ω0

2 .
For an initially spheroidal (3D) elastic particle under-

going planar motions in the shear plane, completely anal-
ogous results are obtained. In particular, the SS motion
for an initially spherical particle is found to be stable,
and the same mechanism described above can be used
to explain the TR/TU transition for the 3D elastic par-
ticles when the projection of the particle onto the shear
plane becomes circular. The phase diagram for the case
of initially prolate spheroidal particles, with initial aspect
ratio ω0, is also shown in Fig. 3(c), for completeness.
Using the single-particle dynamics, we can calculate

the rheological properties of a dilute suspension (concen-
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FIG. 4: The intrinsic viscosity [η] of a dilute suspension of
initially prolate spheroidal, neo-Hookean particles. (a) Time
evolution of [η] in the three regimes (SS, TR and TU) for
G = 0.2. The dotted-black, dashed-blue and solid-red lines
denote results for ω0 = 1, 0.8 and 0.5, respectively. (b) Mean
values of [η], as functions of G, for several values of ω0.

tration φ ≪ 1) of such soft particles [15, 21]. Depending
on the initial shape of the prolate spheroidal particles,
the rheological response will either tend to a steady state
or to a periodic, time-dependent response. Fig. 4(a)
shows plots of the intrinsic viscosity [η] (see its defini-
tion in [21]) for G = 0.2 and three different values of
ω0 in the SS (1), TR (0.8) and TU (0.5) regimes. For
initially spherical (ω0 = 1) particles, all particles reach
a stable configuration with a shear-thinning effect [15].
(Note that [η] becomes negative for large G.) For ini-
tially non-spherical particles, we make use of the time
average of [η] over one period (for a single particle), [η̄],

as a simple measurement of the mean viscosity of a di-
lute suspension of uncorrelated particles [9, 20, 22]. As
shown in Fig. 4(b), suspensions of deformable particles
generally exhibit shear-thinning, although the effect be-
comes less pronounced with decreasing aspect ratio ω0.
It also shows that, for given γ̇, [η̄] drops with particle
stiffness S, although, again, deviations from perfectly
spherical shapes tend to weaken the effect. These phe-
nomena may be explained by noting that compared to
an initially spherical particle, the unsteady rotation of
an initially non-spherical particle generates larger distur-
bances in the flow, and therefore leads to higher intrinsic
viscosity for the suspension.

In conclusion, three different types of motion have been
identified for elastic particles in an unbounded shear flow,
depending on their initial aspect ratio ω0 and the stiffness
parameterG. They are globally similar to those observed
in vesicle motions under shear [5–9], but the phase dia-
gram is simpler, not allowing SS motion for initially non-
spherical particles, nor direct transitions from the SS to
the TU regime. The results for the rheological properties
are also different, since—even for initially non-spherical
particles—the intrinsic viscosity can become negative for
sufficiently soft particles (large G). It is hoped that the
results of this study will help guide future experimen-
tal work on the response of soft elastic particles in mi-
croscale fluidic environments. A more complete study,
including generally ellipsoidal shapes and more complex
out-of-plane motions will be presented elsewhere.
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Mech. (accepted).
[16] J. D. Eshelby, Proc. R. Soc. Lond. A 241, 376 (1957).
[17] J. R. Willis, Adv. Appl. Mech 21, 1 (1981).
[18] M. Kailasam and P. Ponte Castañeda, J. Mech. Phys.
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