Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld
DOI: 10.1103/PhysRevLett.108.058301
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

Matthias Rupp,1,2 Alexandre Tkatchenko,3,2 Klaus-Robert Müller,1,2 and O. Anatole von Lilienfeld4,2,*

1Machine Learning Group, Technical University of Berlin, Franklinstr 28/29, 10587 Berlin, Germany
2Institute of Pure and Applied Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
3Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
4Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA

We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a non-linear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross-validation over more than seven thousand organic molecules yields a mean absolute error of ~10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

Solving the Schrödinger equation (SE), $H \Psi = E \Psi$, for assemblies of atoms is a fundamental problem in quantum mechanics. Alas, solutions that are exact up to numerical precision are intractable for all but the smallest systems with very few atoms. Hierarchies of approximations have evolved, usually trading accuracy for computational efficiency [1]. Conventionally, the external potential, defined by a set of nuclear charges $\{Z_I\}$ and atomic positions $\{R_I\}$, uniquely determines the Hamiltonian H of any system, and thereby the ground state’s potential energy by optimizing Ψ, $H(\{Z_I, R_I\}) \rightarrow E$. For a diverse set of organic molecules, we show that one can use machine learning (ML) instead, $\{Z_I, R_I\} \rightarrow E$. Thus, we circumvent the task of explicitly solving the SE by training once a machine on a finite subset of known solutions. Since many interesting questions in physics require to repeatedly solve the SE, the highly competitive performance of our ML approach may pave the way to large scale exploration of molecular energies in chemical compound space [3, 4].

ML techniques have recently been used with success to map the problem of solving complex physical differential equations to statistical models. Successful attempts include solving Fokker-Planck stochastic differential equations [5], parameterizing interatomic force fields for fixed chemical composition [6, 7], and the discovery of novel ternary oxides for batteries [8]. Motivated by these, and other related efforts [9–12], we develop a non-linear regression ML model for computing molecular atomization energies in chemical compound space [3]. Our model is based on a measure of distance in compound space that accounts for both stoichiometry and configurational variation. After training, energies are predicted for new (out-of-sample) molecular systems, differing in composition and geometry, at negligible computational cost, i.e. milli seconds instead of hours on a conventional CPU. While the model is trained and tested using atomization energies calculated at the hybrid density-functional theory (DFT) level [2, 13, 14], any other training set or level of theory could be used as a starting point for subsequent ML training. Cross-validation on 7165 molecules yields a mean absolute error of 9.9 kcal/mol, which is an order of magnitude more accurate than counting bonds or semi-empirical quantum chemistry.

We use the GDB data base, a library of nearly one billion organic molecules that are stable and synthetically accessible according to organic chemistry rules [15]. While potentially applicable to any stoichiometry, as a proof of principle we restrict ourselves to small organic molecules. Specifically, we define a controlled test-bed consisting of all 7165 organic molecules from the GDB data base [16, 17] with up to seven “heavy” atoms that contain C, N, O, or S, being saturated with hydrogen atoms. Atomization energies range from -800 to -2000 kcal/mol. Structural features include a rich variety of chemistry such as double, and triple-bonds; (hetero)cycles, carboxy, cyanide, amide, alcohol, and epoxide-groups. For each of the many stoichiometries, many constitutional (differing chemical bonds) but no conformational isomers are part of this data base. Based on the string representation of molecules in the data base, we generated Cartesian geometries with OpenBabel [18]. Thereafter, the PBE0 approximation to hybrid DFT [19, 20] in converged numerical basis, as implemented in the FHI-aims code [21] (tight settings/tier2 basis set), was used to compute reference atomization energies for training. Our choice of the PBE0 hybrid functional is motivated by small errors (< 5 kcal/mol) for thermo-chemistry data that includes molecular atomization energies [22].

One of the most important ingredients for ML is the choice of an appropriate data representation that reflects prior knowledge of the application domain, i.e. a model of the underlying physics. A variety of such “descriptors” are used by statistical methods for chem- and bio-informatics applications [23–25]. For modeling atomization energies, we use the same molecular information that enters the Hamiltonian for an electronic structure calcu-
lation, namely the set of Cartesian coordinates, \(\{ \mathbf{R}_i \} \), and nuclear charges, \(\{ Z_i \} \). Our representation consists of atomic energies, and the inter-nuclear Coulomb repulsion operator. Specifically, we represent any molecule by a “Coulomb” matrix \(M \),

\[
M_{ij} = \begin{cases}
0.5 Z_i^2 Z_j^2 & \forall \ I = J, \\
\frac{Z_i Z_j}{| \mathbf{R}_i - \mathbf{R}_j |} & \forall \ I \neq J.
\end{cases}
\]

Here, off-diagonal elements correspond to the Coulomb repulsion between atoms \(I \) and \(J \), while diagonal elements encode a polynomial fit of atomic energies to nuclear charge.

Using ML we attempt to construct a non-linear map between molecular characteristics and atomization energies. This requires a measure of molecular (dis)similarity that is invariant with respect to translations, rotations, and the index ordering of atoms. To this end, we measure the distance between two molecules by the Euclidean norm of their diagonalized Coulomb matrices:

\[
d(M, M') = d(\mathbf{e}, \mathbf{e}') = \sqrt{\sum_{i} | \epsilon_i - \epsilon'_i |^2},
\]

where \(\epsilon \) are the eigenvalues of \(M \) in order of decreasing absolute value. For matrices that differ in dimensionality, \(\epsilon \) of the smaller system is extended by zeros. Note that by representing chemical compound space in this way, (i) any system is uniquely encoded because stoichiometry as well as atomic configuration are explicitly accounted for, (ii) symmetrically equivalent atoms contribute equally, (iii) the diagonalized \(M \) is invariant with respect to atomic permutations, translations, and rotations, and (iv) the distance is continuous with respect to small variations in inter-atomic distances or nuclear charges. As discussed in Ref. [26], these are all crucial criteria for representing atomistic systems within statistical models.

In Fig. 1, relative atomization energies, as a function of \(d(M, M') \), and a histogram of distances are shown for all pairs of molecules in our data set. The inset exemplifies two distances, pyrrol/ethanol and pyrrol/thiophene (N: Blue, O: Red, S: Yellow, C: Black, H: White). Bottom: Absolute differences in atomization energies between \(M \) and \(M' \) as a function of \(d(M, M') \).

To determine \(\{ \alpha_i \} \), we used kernel ridge regression [28]. This regularized model limits the norm of regression coefficients, \(\{ \alpha_i \} \), thereby ensuring the transferability of the model to new compounds. For given length-scale \(\sigma \) and regularization parameter \(\lambda \), the explicit solution to the minimization problem,

\[
\min_{\alpha} \sum_i (E_{i}^{\text{est}}(M_i) - E_{i}^{\text{ref}})^2 + \lambda \sum_i \alpha_i^2
\]

is given by \(\alpha = (K + \lambda I)^{-1} E^{\text{ref}} \), where \(K_{ij} = \exp[-d(M_i, M_j)^2/(2\sigma^2)] \) being the kernel matrix of all training molecules, and \(I \) denoting the identity matrix.

We used stratified [30] five-fold cross-validation [28, 29] for model selection and to estimate performance. Parameters \(\lambda \) and \(\sigma \) were determined in an inner loop of five-fold cross-validation using a logarithmically scaling grid. This procedure is routinely applied in machine learning and statistics to avoid over-fitting and overly optimistic error estimates.

The dependence of the cross-validated ML performance on the number of molecules in training set, \(N \), is
illustrated in Fig. 2 (top). When increasing \(N \) from 500 to 7000, the mean absolute error (MAE) falls off from more than 17 kcal/mol to less than 10 kcal/mol. Furthermore, the width \(\sigma \) of the Gaussian kernel decreases from 460 to 25 on the distance scale of Fig. 1. Because of the discrete nature of chemical space (nuclear charges can only assume integer values), however, we do not expect continuous coverage for \(N \to \infty \), implying that \(\sigma \) will converge to a small but finite value. The regularization hyperparameter \(\lambda \) remains small throughout, consistent with the fact that we model noise-free numerical solutions of the approximated Schrödinger equation. An asymptotic fit of the form \(\sim 1/\sqrt{N} \), based on statistical theory [28, 31] suggests that the MAE can be lowered to \(\sim 7.6 \) kcal/mol for \(N \to \infty \). It is remarkable that already for the here presented, relatively small training set sizes, ML achieves errors of roughly one percent on the relevant scale of energies, clearly outperforming bond counting or semi-empirical quantum chemistry methods. The cross-validated performance for a training set size of \(N = 1000 \) is displayed in Fig. 2 (bottom). There is good correlation with the DFT data. For comparison, corresponding correlations are shown for bond counting [32], and semi-empirical quantum chemistry (PM6 [33]) computed with MOPAC [34]. While the latter two methods exhibit a systematic shift in slope, the inset highlights that the ML correlation accurately reproduces clustering, and slope of one.

Eq. (2) implies that the energy of a query molecule \(\mathbf{M} \) can be seen as an expansion in reference molecules \(\{\mathbf{M}_i\} \). The regression weights \(\{\alpha_i\} \) are scaled by the similarity between query and reference compound as measured by a Gaussian of the distance. Hence, \(\alpha_i \) assigns a positive or negative weight for the energy contribution of the \(i \)-th reference molecule. Within the compound space used as reference, molecules could therefore in principle be ranked according to \(|\alpha_i| \). However, since \(\{\alpha_i\} \) are regression coefficients in a non-linear model, i.e. after a non-linear transformation of the training data, the resulting energy contributions are specific to the employed training set without general implications for other properties or regions of compound space. The locality of the model is measured by \(\sigma \), enabling us to define a range outside of which reference molecules \(\mathbf{M}_i \) can be neglected in their contribution to the energy. For larger number \(N \) of training samples, a smaller \(\sigma \) is obtained and the model becomes more local in chemical space (see supplement for quantification).

In order to assess transferability and applicability of our model to chemical compound space, we use a ML model trained on \(N = 1000 \) molecules (model 1k). The training set of model 1k contains all small molecules with 3 to 5 heavy atoms, and a randomized stratified selection of larger compounds covering the entire energy range. The thousand Coulomb matrices corresponding to the OpenBabel configurations were included as well as four additional Coulomb matrices per molecule. These additional matrices were scaled in order to represent the repulsive wall, the dissociative limit, and the energy minimum at \(f = 1 \) [35, 36]. All predictions are made for molecules that were not used during training of the model.

For testing the transferability, we applied the 1k model to the remaining 6k molecules. The calculations yield errors that hardly change from the estimated performance in the training with a MAE of 15.2 kcal/mol. For the selected molecular subset of the seven thousand smallest molecules in the GDB database [15], we therefore conclude that training on 15% of the molecules permits predictions of atomization energies for the remaining 85% with an accuracy of roughly 15 kcal/mol. For probing its applicability, we investigated whether
the 1k model can also be useful beyond the equilibrium geometries. Specifically, we calculated the functional dependence of atomization energies on scaling Cartesian geometries by a factor, \(f \). From the 6k molecules (not used for training) we picked four chemically diverse species. Specifically, these molecules contain single bonds and branching only (\(C_7H_{16} \)), a double bond (\(C_6H_{12} \)), triple bonds including nitrogen (\(C_6NH_3 \)), and a sulfur containing cycle with a hydroxy group (\(C_4SH_2OH \)). The resulting ML atomization energy curves (Fig. 3) correctly distinguish between the molecules, closely reproduce the DFT energy at \(f = 1 \), and appear continuous and differentiable throughout relevant bonding distances. For comparison, corresponding DFT potential curves are also displayed. While their well-depth and position can be compared to the ML curve, their repulsive wall and dissociative limit was not used for training. Since DFT is a single-determinant theory, it does not reproduce the molecular dissociation limit properly, and does not converge to the sum of atomic energies for large \(f \). On the other hand, our ML model converges to the right dissociation limit by construction. Albeit significantly overestimating the position of the well depth in the case of \(C_3SH_2OH \) and \(C_6NH_5 \), the ML model is in very good agreement with the DFT data for the larger molecules. This might be due to the fact that in the total set larger molecules are more frequent than smaller molecules. Overall, the ML model is in good agreement with the correct physics (single and differentiable well depth of reasonable magnitude and position) as represented by the DFT potential curves. The four ML curves deviate from their dissociative and repulsive limit \((E(f = 2/3) = E(f = 3) = 0) \) used during training at most by 20 kcal/mol at \(f = 2/3 \), and by 8 kcal/mol at \(f = 3 \). We reiterate that while the DFT curves had to be calculated explicitly for these four molecules, the ML curves correspond to analytical predictions based on a training set with one thousand other molecules.

We have developed a ML approach for modeling atomization energies across molecular compound space. For larger training sets, \(N \geq 1000 \), the accuracy of the ML model becomes competitive with mean-field electronic structure theory—at a fraction of the computational cost. We find good performance when making predictions for unseen organic molecules (transferability), and when predicting atomization energies for distorted equilibrium geometries. Our representation of molecules as Coulomb matrices is inspired by the nuclear repulsion term in the molecular Hamiltonian, and free atom energies. Future extensions of our approach might be used for geometry relaxation, chemical reactions [37], molecular dynamics in various ensembles [38], or rational compound design applications [39–41]. Finally, our results suggest that the Coulomb matrix, or improvements thereof, could be of interest as a descriptor beyond the presented application.

We are thankful for helpful discussions with K. Burke, M. Cuendet, K. Hansen, J-L. Reymond, B. C. Rinds pacher, M. Rozgic, M. Scheffler, A. P. Thompson, M. E. Tuckerman, S. Varma. All authors acknowledge support from the long program “Navigating Chemical Compound Space for Materials and Bio Design”, IPAM, UCLA. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. DOE under contract DE-AC02-06CH11357. M. R. and K.-R. M. acknowledge partial support by DFG (MU 987/4-2) and EU (PASCAL2).

* Electronic address: anatole@alcf.anl.gov

[30] Stratification was done by sorting energies of the training data, grouping corresponding sorted compounds into blocks of five compounds each, and, for each such block, randomly assigning one compound to one cross-validation fold. This procedure ensures that each fold covers the whole energy range.
[36] For the repulsive wall, atomization energies for Coulomb matrices were set to zero at typical roots for covalent bonds, \(f = 2/3 \). [35] For the minimum atomization energies, the finite difference derivative, \(\frac{dE}{df} = 0 \), was set to zero at \(f = 1 \), using \(df = 0.005 \). For the dissociative tail we assume zero atomization energies at \(f = 3 \).