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The Nernst coefficient for the quasi-one-dimensional metal, Li0.9Mo6O17, is found to be among
the largest known for metals (ν ≃ 500 µV/KT at T ∼ 20 K), and is enhanced in a broad range
of temperature by orders of magnitude over the value expected from Boltzmann theory for carrier
diffusion. A comparatively small Seebeck coefficient implies that Li0.9Mo6O17 is bipolar with large,
partial Seebeck coefficients of opposite sign. A very large thermomagnetic figure of merit, ZT ∼ 0.5,
is found at high field in the range T ≈ 35− 50 K.

The Nernst effect, a transverse electric field generated
by a longitudinal temperature gradient in the presence
of a perpendicular magnetic field, has been known since
its discovery in the 19th century in the semimetal bis-
muth [1]. Conductors with large Nernst coefficients are
potential candidates for use in cryogenic refrigeration [2],
but in spite of several decades’ research and a demand
for such devices at temperatures below 100 K (e.g., for
infrared detectors), none have yet proved practical. In
recent years, Nernst-effect measurements have received
renewed attention as a means for probing the pseudogap
phase of cuprate superconductors [3, 4] and novel ground
states of other correlated-electron systems [5], prompting
a reassessment of the physics leading to large Nernst co-
efficients in metals. Emphasizing the contribution from
diffusing charge carriers, experiment and theory agree [5]
that the Nernst-coefficient magnitude is set by the ratio
of charge carrier mobility to Fermi energy. Here we re-
port observations of very large Nernst coefficients in the
quasi-one-dimensional (Q1D) metal, Li0.9Mo6O17, rival-
ing the largest known for bismuth and graphite. This
material possesses neither a very large mobility nor a
small Fermi energy. We establish that conduction along
the Q1D chains of this material is bipolar, with very large
partial thermopowers of opposite sign that predominate
over conventional carrier diffusion in a broad tempera-
ture range. The observations offer new insight into the
origin of large thermoelectric coefficients in bulk conduc-
tors and expand the criteria for viable materials in ther-
momagnetic cooling applications.

Li0.9Mo6O17, a low-temperature superconductor (Tc ≈
2 K) first synthesized and studied in the 1980s [6, 7],
has attracted interest more recently for its quasi-one di-
mensionality and Luttinger-liquid candidacy [8–11]. This
compound is unusual among inorganic and organic Q1D
compounds in its absence of a conventional density-wave
transition [12, 13] (either charge or spin) throughout a
broad temperature range, T ≥ Tc. An upturn in its re-
sistivity below TM ∼ 30 K may be associated with local-
ization, dimensional crossover or the development of un-
conventional (e.g., electronically-driven) charge density-
wave order [12–14]. Though the T → 0 ground state (su-

perconducting, metallic or insulating) is sensitive to heat
treatment and can vary among as-prepared crystals,[15]
the anisotropy and temperature variation of electrical
properties for T ≥ 5 K, the regime of study here, are
robust and reproducible [12–17].

Single-crystal growth of Li0.9Mo6O17 is described in
detail elsewhere [7, 13]. Crystals had typical dimensions
0.05− 0.15 mm along a and 0.5− 2 mm in the b-c plane.
Longitudinal and transverse voltages were measured with
Au leads attached with silver epoxy. A 25 µm-diameter
chromel-constantan differential thermocouple monitored
the temperature difference. The Nernst signal at each
field was determined from the slope of linear VH -∆Tx

curves (with VH the field-odd transverse voltage). Lat-
tice constants and oxygen content for six crystals studied
and additional details on the transport measurements are
described in the Supplemental Material [18].

Complete sets of transport measurements (resistiv-
ity, thermopower, thermal conductivity, Hall and Nernst
coefficients) were measured on two single crystals of
Li0.9Mo6O17 (LMO), designated A2 and C, with electric
or heat currents along the Q1D Mo-O chains (crystallo-
graphic b axis; inset Fig. 1). The Nernst coefficient of
specimen C was also measured with heat current along
the c axis. Thermal and thermoelectric measurements
(heat flow along b) were also performed on a third crys-
tal, designated D. For heat flow along the x direction
(temperature gradient, ∇xT ) and magnetic field along z,
the Nernst coefficient is defined as, νyx = −Ey/(∇xTBz).

With magnetic field along the least conducting a axis,
νcb and νbc were determined for specimens A2 and C
and νcb for specimen D as shown in Fig.1(a) [18]. The
observed ratio, νcb/|νbc| ∼ 3 − 6, reflects the resistiv-
ity anisotropy, ρc/ρb, and agrees well with measurements
on similar crystals [16, 17]. ν(T ) in nonmagnetic metals
may have contributions from charge-carrier diffusion and
from phonon drag, the latter arising from the interaction
of the carriers with a non-equilibrium population of heat-
carrying phonons. The diffusion term can be expressed as
[5, 19], ν/T ≃ (π2/3)(kB/e)(µ/TF ) = 283(µ/TF ), where
µ is the carrier mobility and TF the Fermi temperature.
This expression approximates ν/T quite well at low T
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FIG. 1: (color online) (a) Nernst coefficient, ν(T ), for crystals A2 (dashed lines), C (circles and squares), and D (triangles).
For crystal C: νcb and νbc determined with primary heat current along b (solid circles) and c (solid squares), respectively. The
specimen, originally with thickness 110 µm along a, was mechanically thinned to 55 µm and remeasured with primary heat
current along b (open circles) [18]. (b) ν/T vs. T for crystal C, compared to bismuth [Ref.’s 20 (solid curve) and 21 (dashed
curve)] and graphite (Ref. 22). The dash-dot-dot curve labeled “283µ/TF ” represents the carrier-diffusion contribution from
Boltzmann theory, determined from the carrier mobilities and estimated Fermi temperature [18]. (c) Figure of merit as a
function of magnetic field for crystal C at several temperatures. (d) zero-field thermal conductivities along the b and c axes,
inset: same data plotted as κT vs. T to emphasize the large constant term in κb(T ). Main Inset: Perspective view of the LMO
monoclinic unit cell viewed along the b axis; Q1D Mo1-O-Mo4 zigzag double chains composed of MoO6 octahedra (highlighted
bonds) are part of planar Mo-O networks whose two dimensionality is broken by the Li ions.

(within a factor of 3 − 5) for Bi, graphite and a variety
of other multi-band, correlated, and/or low-dimensional
metals [5], over six orders of magnitude in µ/TF [18].
The ν/T data for LMO [Fig. 1(b)] exceed an estimate of
this diffusion contribution (dash-dot-dot curve) by four
orders of magnitude at low T , and remain significantly
larger to room temperature. The expression is strictly
valid for a linear energy dependence of the Hall angle at
the Fermi level. Though strong energy-dependent scat-
tering, as may arise from electron correlations or incipient
density-wave order, or proximity to a quantum critical
point[5], can enhance this energy dependence and hence
ν/T , it is very unlikely such effects can account for this
very large discrepancy [19]. We conclude that a mech-
anism other than carrier diffusion predominates in ν(T )
over the entire temperature range.

Consider the potential of LMO for application. For
operation as an Ettingshausen cooler, with electric cur-

rent applied along the b axis generating heat flow along
c, the relevant adiabatic thermomagnetic figure of merit
is [2], ZbcT = NbcNcbT/(ρbκc) where N = νB and κc

is the c-axis thermal conductivity. Fig. 1(c) shows the
field dependence of ZbcT along with κc(T ) [Fig. 1(d)];
the latter is independent of field. We see that ZT at
35 K reaches 0.5 for B=9T with no sign of saturation,
among the highest known values for any material [23, 24].
Viable thermomagnetic materials for applications should
have ZT approaching 1 at fields achievable using small
permanent magnets (B . 1T). It is conceivable that the
inter-chain κc can be reduced (e.g. through the intro-
duction of mass disorder via chemical substitution) to
enhance ZT at lower field.

The Seebeck coefficient or thermopower (TEP), S =
−Ex/∇xT , reveals an important aspect of conduction
in LMO. Crystals C and D with the largest ν(T ) have
TEP values (Fig.’s 2 and 3) that are modest in magni-
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FIG. 2: (color online) Seebeck coefficient (S), resistivity,
and Hall coefficient for specimen C. Inset: Fermi surface for
Li0.9Mo6O17 (adapted from Ref. 9).

tude. Consequently, the ratio of transverse to longitu-
dinal thermoelectric fields, Ey/Ex = νB/S, exceeds 102

at 40 K; the electric field is essentially perpendicular to
the temperature gradient. The implication is that LMO
is compensated, with a cancellation of very large hole
and electron Seebeck coefficients (opposite in sign). This
can be seen more explicitly from the expression for ν
in a bipolar, anisotropic conductor [25] which includes a
bipolar term involving the difference, Sh−Se, of the hole
and electron partial Seebeck coefficients along the heat
flow. For perfect compensation, νcb ≃ (1/2)µb

(

Sh
b − Se

b

)

,
while Sb = (1/2)(Sh

b + Se
b ). Bipolarity is plausible given

the band structure [8, 9, 26] composed of two nearly-
degenerate, approximately 1/2-filled, Q1D bands of Mo
dxy parentage crossing the Fermi energy; there are two
pairs of slightly warped Fermi surface (FS) sheets in the
b*-c* planes (inset, Fig. 2). Each sheet, with positive
and negative curvature, can contribute electron and hole
character if the mean free path is anisotropic [27]. Bipo-
larity is well known to enhance the Nernst effect and is
a prerequisite for useful thermomagnetic materials.

Supporting this bipolar picture, the TEP of other crys-
tals with higher oxygen content, like A1 and A2 (Fig. 3),
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FIG. 3: (color online) Zero-field b-axis Seebeck coefficient
for four Li0.9Mo6O17 specimens. Combined results of x-ray,
compositional, and Hall measurements indicate that speci-
mens with large peaks (A1, A2) are more oxygenated and
particle-hole asymmetric (Rh

≫ Re and σh < σe) compared
to those with linear-T thermopowers (C,D,E) [18]. Inset:
Hole and electron partial thermopowers computed using the
equation [25], the measured Nernst coefficient (νcb), and two-
band model parameters; error bars (25%) are propagated from
those of the Hall data [18].

exhibit very large, positive maxima at T = 50 − 70 K
that augment the linear-T form (specimens C, D, E) up
to 300 K and beyond (previously published data for the
TEP of LMO [28] fall between those of specimens A2
and C). This behavior and the smaller Nernst coefficient
for specimen A2 are consistent with a departure from
electron-hole symmetry in the more oxygenated crystals
and incomplete cancellation of very large partial ther-
mopowers.

A two-component analysis of the transport places these
qualitative observations on a quantitative footing. Mag-
netoresistance and Hall data [18] for crystal C yield
Rh ≃ −Re ≃ 3.4 × 10−8 Ω m/T at 300 K and σh ≃ σe

such that the measured Hall coefficient (Fig. 2) is an
order of magnitude smaller than Rh or |Re|, consis-
tent with the substantial cancellation implied by the
thermoelectric coefficients. The effective carrier density
≈ 2/(Rh|e|) ≃ 3.7 × 1026 m−3 represents ∼ 13% of that
estimated from the chemistry/bonding [18], suggesting
localization of a significant fraction of carriers at the FS
in accord with optical studies [12]. A similar analysis
of transport data for crystal A2 [18] yields Rh ≃ 7|Re|,
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σh ≃ 0.4σe, and a mobile carrier fraction ∼ 2.5%. Us-
ing these hole and electron transport coefficients and the
measured νcb(T ), the equation for ν [25] can be inverted
to compute Sh

b (T ) and Se
b (T ) for the two crystals (inset,

Fig. 3). In generating these curves it was assumed that
σh
c /σc = σh

b /σb, but relaxing this assumption yields com-
parable TEP magnitudes [18]. The colossal TEP values
(2−6 mV/K at low T ) are typical of semiconductors [29],
but are unprecedented for metals.

We hypothesize that the computed TEP is substan-
tially larger than the intrinsic chain-axis value because
the measured σb in LMO is suppressed by the occurrence
of incomplete electrical connectivity of the Mo-O chains.
This hypothesis is motivated by the Hall data implying
a large fraction of localized carriers, and the observa-
tion of a large constant term in κb(T ) (12.9 W/mK) at
T ≥ 80 K [inset, Fig. 1(d)]. The latter is attributed to
electronic heat conduction. Poor connectivity will sub-
stantially suppress the measured σb from that of contin-
uous chains, whereas electronic heat conduction on chain
fragments will continue to contribute given that heat is
transferred readily to the lattice. Supporting this pic-
ture, the constant term in κb varies little among sev-
eral other crystals with varying σb [18]. This scenario is
appealing because it can simultaneously account for the
large fraction of total charge that is localized and the dif-
ferent values for the anisotropy ratio σb/σc reported in
the literature [6, 16, 17, 30]. It also favors a Sommerfeld
value for the Lorenz number (L0 = 2.45×10−8 WΩ/K2):
the resistivity for specimen C and its estimated mobile
carrier fraction (f = 0.13) from the Hall measurement
yields, κe

b(300 K) = (L0/f) × 0.55 × 10−5(Ωm)−1 ×
300 K=10 W/mK. A bipolar thermal conductivity [31],
expected in a metal with overlapping bands at EF , should
also contribute . 1 W/mK. Bipolar heat flow should
dominate the thermal Hall conductivity (Righi-Leduc ef-
fect) of a closely compensated system, offering an alter-
native explanation for recent observations of an appar-
ent Wiedemann-Franz law violation [30] in LMO based
on such measurements. An intrinsic chain resistivity
at 300 K, ρch = fρb ≃ 70 µΩcm and Hall mobility
µch ≃ (µb/f) ≃ 2.3 × 10−2T−1 are inferred. The com-
puted partial thermopowers (Fig. 3), depending inversely
on σb [25], should be reduced accordingly by the factor
f .

On the other hand, the measured thermoelectric coef-
ficients reflect appropriate bulk averages, weighing volt-
age contributions from short and long chain fragments
according to local temperature differences. Thus the
intrinsic chain thermoelectric behavior must be closest
to that of the most conducting specimen C, having the
largest value of ν and smallest of the TEP (the most
closely compensated). The deviation from particle-hole
symmetry and increased carrier localization character-
izing more oxygenated crystals presumably reflect the
combined effects of charge doping and disorder associ-

ated with oxygen defects [15]. The electronic system of
LMO is most one-dimensional at high T where the ther-
mal energy exceeds the transverse hopping energy (t⊥)
that determines the warping of the FS sheets [32]. This
is the regime where a conventional phonon-drag mech-
anism is least likely to explain the large thermoelectric
coefficients since anharmonic phonon-phonon scattering
should limit momentum transfer to the electron system,
rendering phonon drag negligible. However, it is possi-
ble the low dimensionality of the lattice [13] suppresses
phonon-phonon scattering along the chains [33], thereby
enhancing phonon drag in this regime. It is difficult to as-
sess the possible relevance of Luttinger physics. Theoret-
ical treatments of the thermopower for single Luttinger
chains with impurity scattering [34] indicate a linear tem-
perature dependence, inconsistent with the present re-
sults. More realistic models including electron-electron
Umklapp scattering and coupled chains (essential for the
Nernst effect) have not been treated to our knowledge.
At T ≤ TM , where higher-dimensional behavior is mani-
fested in unconventional density-wave order [12–14] and
the appearance of superconductivity, large phonon-drag
effects are plausible, particularly near T = 20 K where
both κb and ν exhibit maxima (Fig. 1). There the phonon
mean free path Λ is ∼ 10 µm, as inferred from kinetic the-
ory using the measured specific heat [12] and an acoustic
phonon velocity υ ≃ 3 km/s. This implies a phonon-
drag TEP [35], Sg ≃ υΛ/µe−phT ≈ 750 µV/K using
µe−ph = 2T−1 (estimated as 5 times the average µ/f
for specimen C), in good agreement with the computed
partial TEP value (corrected by the factor f).
In summary, Li0.9Mo6O17 is found to have a bipolar

Nernst coefficient that is among the largest known for
metals and far exceeds the expected contribution from
carrier diffusion over a broad temperature range. Though
phonon drag appears capable of accounting for this dis-
crepancy at the lowest T , low-dimensional physics of the
electronic and/or lattice systems may be important to
a complete understanding of its enhanced thermoelectric
coefficients.
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