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In the limit where the bending modulus vanishes, we construct layer configurations with arbitrary
dislocation textures by exploiting a connection between uniformly-spaced layers in two dimensions
and developable surfaces in three dimensions. We then show how these focal textures can be used
to construct layer configurations with finite bending modulus.

When subject to frustrating boundary conditions or
extreme strains, liquid crystals, superfluids, and mag-
nets will locally rise into their higher-symmetry phases
resulting in point, line, and planar defects [1]. Energetic
considerations determine the dimensionality of these de-
fects; in some systems, rigorous results demonstrate that
the energy minimizers will have point or line defects [2, 3].
Smectic liquid crystals represent a special challenge as
they are described by an essentially nonlinear elasticity
theory [1, 4–6] that gives rise to anomalous elasticity
[7], dynamics [8, 9], and qualitatively modified ground
states [10, 11]. These nonlinearities are generic features
of elastic systems with free surfaces [12] and, thus, smec-
tics are ideal systems for understanding elastic geometric
nonlinearities in general. Previously, we have studied
smectic liquid crystals in the limit where the bending
energy is neglected so that the layer spacing is strictly
constant [13, 14]. Here we extend some of these tech-
niques by employing a connection between developable
surfaces in three dimensions and uniformly-spaced layers
in two dimensions, allowing us to find layer configura-
tions for any specified dislocation texture. We compare
these solutions with exact solutions to the nonlinear elas-
ticity [10] equations which only allow superposition of
dislocations along a single line [15–17]. Not only do the
two solution methods agree, but the geometric construc-
tion explains the fundamental asymmetry of the smectic
strain field around a dislocation, first predicted by Brener
and Marchenko [10], and sheds light on the simple, topo-
logically based, Bogomol’nyi-Prasad-Sommerfield (BPS)
bound [17, 18]. We exploit this understanding to con-
struct textures for dislocations separated by a finite num-
ber of layers with finite bending rigidity.

The order in a smectic is characterized by the phase
field φ(x) appearing in the density modulation δρ ∝
cos[2πφ(x)/a], where a is the natural layer spacing. In
terms of φ the free energy is the sum of compression and
bending contributions
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where B is the compression modulus, λ =
√
K1/B

is the penetration length and K1 is the bending mod-

ulus. In smectics A, the normal to the smectic lay-
ers is the nematic director n = ∇φ/|∇φ|. Geometri-
cal and topological insight is gained by considering the
surface [x, y, φ(x, y)] ∈ R3 with surface normal N =
[−∂xφ,−∂yφ, 1] /

√
1 + |∇φ|2 [19]. Here, we shall focus

our attention on the limit λ � a, or K1 → 0, where
bending becomes unimportant compared to compression.
More physically, this corresponds to studying edge de-
fects of Burgers scalar b, in the limit of large b in com-
parison to λ [1, 18]. Note that when λ = 0 the free-
energy is strictly minimized when |∇φ| = 1; differentiat-
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which requires the Gaussian curvature, K ∝ ∂2xφ∂
2
yφ −

(∂x∂yφ)
2

= 0. It follows from Gauß’s Theorem Egregium
that our surface must be isometric to the plane, so it can
be built out of sections of planes, cones, cylinders, and
tangent-developable surfaces. The constant angle condi-
tion further restricts to planes, cones, and the develop-
ment of cylindrical helices [20].

It is amusing that the latter can be used to gener-
ate uniformly-spaced involutes of curves [21, 22]; though
known to the ancients [23], we will briefly review the
connection between level sets of constant-angle, devel-
opable surfaces and involutes. Consider a curve R(σ) =
[x(σ), y(σ), z(σ)] in R3, parameterized by its arclength
σ, with Frenet-Serret frame [t,ν,β] = [Ṙ, ṫ/κ, t × ν],
curvature κ(σ) > 0 and torsion τ . The tangent de-
velopable surface is defined in terms of the curve and
its family of tangents: X(σ1, σ2) = R(σ1) − σ2t(σ1)
for σ2 ≥ 0. Note that the unit normal to the sur-
face N(σ1, σ2) = ∂1X × ∂2X/|∂1X × ∂2X| = β(σ1), the
curve’s binormal at σ1. It follows that N only depends
on σ1 and so the Gauß curvature vanishes. If the angle
between N and ẑ is constant then so is the angle be-
tween β and ẑ. Differentiating with repect to σ, we have
0 = ẑ · β̇ = −τ ẑ · ν so ν lies in the xy-plane. Define the
surface curve γ(s) = X(σ1+s, σ2+s) with tangent γ̇(s) =
(σ2 + s)κ(σ1 + s)ν(σ1 + s). γ lies in a plane of constant
z = c and γ(s) sweeps out an involute starting at s = 0 on
the planar curve R⊥(s) ≡ [x(σ1 + s), y(σ1 + s), c]. Apart



2

x

y
z

FIG. 1: (Color online) We construct the two-dimensional lay-
ers by taking level sets of a piecewise developable (Gaussian
curvature K = 0) surface which makes a constant angle with
the ẑ direction. From back left to close right, the surface
is made of two intersecting planes which end and attach to
pieces of cone which necessarily intersect another set of par-
allel planes on a parabola.

from concentric circles, any set of uniformly-spaced invo-
lutes will generate an evolute curve which constitutes a
singularity or edge of the surface and where the bending
of the involutes diverges. Since this will generate a two-
dimensional region without smectic order, we will not
consider such cases, although surfaces like this are liable
to play a role in sample cells with large inclusions. Here
we are interested in defects that can be reduced to points
and lines and so we only consider constant angle cones
and planes. For convenience we set the constant angle to
be π/4.

Smectics enjoy two types of point defects, disclinations
and dislocations. In the language of surfaces the discli-
nations are critical or singular points on the graph of
φ. Dislocations can be constructed by choosing φ =
x + (b/2π) arg (x+ iy) to be a tilted helicoid [19], re-
sulting in a two-dimensional smectic with bending and
compression deformations. However, we can also build a
dislocation with vanishing compression with lines across
which the director jumps discontinously, thus being vis-
ible under light microscopy. To this end, consider the
construction of an edge dislocation shown in Fig. 1. Two
planes meeting along a ridge are connected to two simi-
lar planes, that meet along a ridge at a lower height (b/2
lower where b ∈ aZ is the Burgers scalar), by a portion
of a cone. The cone’s apex coincides with the endpoint
of the upper ridge and the transition from plane to cone
is Lipschitz C1. However, the intersection with the lower
pair of planes introduces a cusp, or curvature wall, along
which the normal changes discontinuously and the sur-
face is only Lipschitz C0, as is the director field. This

wall consists of part of a pair of parabolæ. Taking level
sets of the surface produces an uniformly-spaced smec-
tic texture for a dislocation. Aside from the point defect
corresponding to the cone’s vertex, there is a “focal” set
consisting of the two parabolic segments x2 = b|y|+b2/4.
Recall that in the linear theory the elastic response is
concentrated in two full parabolic regions above and be-
low the defect [24]. The present construction only gen-
erates compression strain on the “right” side of the de-
fect. Because these walls arise from focal curves in the
three-dimensional picture, we will interchangeably refer
to them as focal lines. Indeed, when generalized to three
dimensions the two focal points become curves as well,
leading to the classic cyclides of Dupin [14].

In the presence of a defect, BPS minimizers of (1) and
related free energies were found [10, 15, 17] and, for small
λ/y [18], the displacement for a single defect at (x, y) =
(0, 0) is u(x, y) ≡ y − φ(x, y) is

u(x, y) = 2λsgn(y) ln
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where E(x) ≡ (π)−1/2

∫ x
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tion. The associated compression strain e for y > 0 scales
as

∂yu =
−x
√
λ

2
√
πy3

(
e−b/(4λ) − 1

)
e−x

2/(4λy)

1 +
(
e−b/(4λ) − 1

)
E
(

x
2
√
λy

) . (4)

For large λ/b this reproduces the symmetric, linear strain
field. However, as λ/b → 0, we have ∂yu ∼ θ(x)δ(y −
x2/b), half of a parabola on the side with fewer layers,
and, as shown in Fig. 2, in agreement with the focal con-
struction. Though the shape of the parabola is identical
in the focal and BPS solutions, we note that there is a
vertical offset of b/4 between them. Because the BPS
solution is based only on a step-function boundary con-
dition at y = 0 used to satisfy the topology at infinity, we
do not expect the near-defect details to be reproduced,
but for large x and y, the solutions agree as shown in
[18].

Why should the strain be asymmetric [10]? Recall
that the nonlinear compression strain e measures the de-
viation of the wavenumber q = 2π/d from q0 = 2π/a,
e ∝ (q − q0)2 and so, away from the linear regime, com-
pression d < a is more energetic than dilation d > a. It
follows that in the equal-spacing limit, the texture will
preferentially distort on the dilated side. The presence
of a focal line in the BPS solution also is not a mystery.
Differentiating the BPS equation

∂yu−
1

2

(
∂xu

)2
= λ∂2xu, (5)

with respect to x yields the Burgers equation ∂yv −
v∂xv = λ∂2xv for v = ∂xu. As is well known, the in-
viscid Burgers equation has straight characteristics and
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FIG. 2: (Color online) Comparison of focal and BPS con-
structions: the dashed lines show the layers from the fo-
cal construction in Fig. 1 for the layers on one side of (a)
one or (b) two dislocations. The solid curves are level sets
of φ = y − u(x, y), where u is determined by BPS evolu-
tion, starting with the first layer of the focal construction, for
λ = 0.05 and λ = 0.1. The background is shaded according to
the compression energy of the asymptotic BPS solution, Eq.
(3), for λ = 0.05. The parabolic focal line is y = ±(x2/b−b/4);
we use the vertical offset in the BPS solution [10, 17]. (c) The
focal construction for two dislocations, built by attaching two
single dislocations as in Fig. 1. Note that now some of the
focal lines arise from the intersection of cones with cones and
are pieces of hyperbolæ, not parabolæ.

produces asymptotically parabolic shock curves as we
have here [25]. In comparison, the focal construction
arises from constructing characteristics of the geodesic
condition (n ·∇)n = 0 [13]. Expanding this equation to
quadratic order in δn ≈ n − ŷ precisely yields Burgers
equation in v = −x̂ · δn.

When multiple defects lie along a line of constant y,
the BPS method allows the superposition of defects via
the Hopf-Cole transformation S = eu/(2λ). We can su-
perpose in the focal construction too: multiple edge dis-

locations can be constructed by repeating the procedure
described for Fig. 1. For example, in Fig. 2 we show the
construction for a pair, both located at the same value
of y. Note that there are now new features: in addition
to parabolic focal curves, there are regions of the surface
where cones intersect cones and, by definition, this hap-
pens along hyperbolæ. As we show in Fig. 3, it is also
possible to construct arbitrary focal textures in which the
dislocations no longer lie at the same value of y: when
lines meet circles they intersect on parabolæ, when circles
meet circles they intersect on a hyperbola.

How does the BPS solution fare? Again we begin with
the deformations for large λ/y, where straightforward nu-
merical analysis shows that hyperbolæ are in the strain
field
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(
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)

E
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2
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(
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E
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x− x2
2
√
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)
, (6)

corresponding to a pair of dislocations [17]. Indeed, Fig.
2 shows remarkably good agreement between the focal
construction and the BPS solution, including the details
of the hyperbolæ and the merging of the two focal curves.

We also compute ‘exact’ solutions for the level sets
φ(x, y) = y − u(x, y), shown as dark solid and dashed
lines in Fig. 2, where the initial condition u(x, 0) is given
by the phase field at y = 0 in the focal construction. As
expected from the asymptotic solution, the BPS evolu-
tion respects the parabolic cusps in the focal construc-
tion, deforming most to the left of the cusps but not
on the right. This is to be expected; the deformation
preferentially smooths out the higher curvature side and
spreads the strain ‘inside’ the parabolic region in agree-
ment with the predictions of linear elasticity. In BPS
evolution, the quantities S± = exp{±u/(2λ)} satisfy the
extremal equations ∂yS± = ±λ∂2xS± [15, 17]. The evolu-
tion has an inherent directionality: BPS evolution relaxes
S+ to flat layers above the dislocation and S− below the
dislocation. Therefore, a dislocation at y = 0 requires
the BPS evolution to change directionality on either side
of the line at y = 0. Similarly, it is possible to find the
textures generated by multiple dislocations, as long as
they lie along the y-axis.

When defects sit at different values of y, we have to be
more careful when λ > 0. It is instructive to consider the
difficulty in detail. First, consider the focal construction
shown in Fig. 3 (dashed lines). In the vicinity of each dis-
location, we expect the solutions at finite λ to be approx-
imated by BPS evolution. Above and below both dislo-
cations, there is no difficulty constructing a valid BPS
evolution since the BPS evolution directions agree. The
layers between the two dislocations, however, must evolve
upward on the left and downward on the right. We can
reconcile this discrepancy by noting that the parabolic
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FIG. 3: (Color online) Two edge dislocations at arbitrary
(xi, yi). The dashed curves are the focal layers, and the solid,
gray curves are BPS evolution with λ = 0.05. Parabolic (red
and orange) and hyperbolic (green) cusps of the focal con-
struction are also shown. The thick solid lines indicates the
division between upward and downward evolving BPS solu-
tions.

cusp between dislocations in the focal texture also forms
a natural division between upward and downward evo-
lution. As shown in Fig. (3), we evolve upward on the
left of the parabolic cusp using the displacement for the
lower dislocation as the initial condition. On the right,
we evolve downward using the phase field for the upper
dislocation as an initial condition. The result of evolv-
ing upward and downward as indicated by the arrows
in Fig. (3) is shown as solid layers. The layers arising

from BPS evolution of opposite directionality meet nat-
urally at the parabolic cusps without further adjustment
because the deformation field is strongly asymmetric, in
this case confined to the left of the parabolic cusp. Were
this not to occur, we could, of course, impose continu-
ity of the layers at the cusp by setting the displacement
of the upward evolution equal to that of the downward
evolution. The success of the focal method hinges on the
asymmetry of the distortion field for small λ. Once we
have constructed the shape of the layer on either side of
the two dislocations, we may continue the evolution out
to infinity. Again, the BPS evolution preserves the un-
derlying structure of the cusps of the focal textures and
the regions of maximum strain (and layer deviation) oc-
cur just to the left of the cusps. As long as the defects
are further apart than λ, this procedure should be reli-
able. It would be interesting to consider the energetics
of different focal constructions that result in the same
topology but with differing domain structure including
the germs and bâtonnetsconsidered in [16].

In summary, we have developed a focal construction for
multiple (and arbitrary) configurations of dislocations in
a smectic. This construction uncovers a deep relation-
ship between the BPS evolution of single and multiple
dislocations and the focal construction. Using the nat-
urally occurring cusps in the focal construction, we are
able to develop BPS solutions for dislocations with layers
between them that account for the geometric nonlinear-
ities in the elastic strain.

It is a pleasure to acknowledge discussions with D.
Beller, B.G. Chen, R. Kusner, E.A. Matsumoto, and R.A.
Mosna. GPA and RDK were supported in part by NSF
Grant DMR05-47230. CDS was supported in part by
NSF Grant DMR08-46582.
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