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We investigated the magnetic structure of an orthorhombic YMnO3 thin film by resonant soft
x-ray and hard x-ray diffraction. We observed a temperature-dependent incommensurate magnetic
reflection below 45 K and a commensurate lattice-distortion reflection below 35 K. These results
demonstrate that the ground state is composed of coexisting E-type and cycloidal states. Their
different ordering temperatures clarify the origin of the large polarization to be caused by the E-
type antiferromagnetic states in the orthorhombic YMnO3 thin film.

Recently, there has been a lot of interest in multifer-
roic materials displaying both ferroelectric and magnetic
orders. It is of particular importance to control mag-
netization (electric polarization) by electric (magnetic)
field as this has large potential for novel device applica-
tions. This can be most easily be achieved by materials
with giant magnetoelectric couplings [1–3]. Orthorhom-
bic (o-)RMnO3 (R: rare-earth) with perovskite structure
belongs to this category and can be viewed as prototyp-
ical multiferroic materials. For example, in TbMnO3,
ferroelectricity occurs below 28 K, concomitant with the
onset of cycloidal spin ordering [4–6]. The ferroelectric-
ity in the cycloidal states is realized by the shifts of the
oxygen ions through the inverse Dzyaloshinskii-Moriya
interaction [7, 8]. This is in contrast to E-type antiferro-
magnetic structures (↑↑↓↓ type), where ferroelectricity is
caused by symmetric exchange striction [9]. E-type mag-
netic structures occur in o-RMnO3 with smaller R ions.
It is predicted that the E-type structure leads to a larger
polarization, which has been experimentally confirmed in
the o-RMnO3 systems [10, 11].

The fabrication of the o-RMnO3 thin films has been
especially important for device application of the multi-
ferroic materials. Moreover, bulk o-RMnO3 samples with
smaller R ions (R = Y, Ho - Lu) can only be synthesized
under high oxygen pressure [11], which strongly limits
studies on the most interesting materials due to the ab-
sence of significantly large high-quality single crystals.
Recently, Nakamura et al. reported the fabrication of o-
YMnO3 thin films onto the YAlO3 (010) substrate [12].
Their thin film showed a ferroelectric transition at 40 K
with a large saturation polarization of 0.8 µC/cm2. The
ferroelectric polarization could be controlled by magnetic
fields, demonstrating magnetoelectric behaviors.

Therefore it is interesting and important to clarify the
exact magnetic structure of YMnO3 thin films. YMnO3

bulk exhibits the most distorted perovskite structure
with a sinusoidal magnetic structure with a tempera-
ture dependent modulation vector which is frozen be-
low 28 K [13]. In this study we use the technique of
resonant soft x-ray diffraction at Mn 2p → 3d edges to
obtain the information of magnetic ordering in YMnO3

thin films. Resonant soft x-ray diffraction has recently
been used to study the magnetic ordering in multifer-
roic TbMnO3 and Eu3/4Y1/4MnO3 [14–16] using single
crystals for the larger R-ion orthorhombic RMnO3 se-
ries. This technique is especially suitable for studying
magnetism in thin films (as demonstrated on RNiO3

[17]) because even small sample volume of thin films
can be used due to the large resonant enhancement of
magnetic scattering at the transition-metal 2p → 3d
edges. We detect (0 qb 0) (qb ∼ 0.5) magnetic peak,
and observed temperature-dependent incommensurabili-
ties. From hard x-ray diffraction we found a commensu-
rate superlattice reflection (0 1 0) that reflects the lat-
tice distortion caused by the E-type magnetic structure.
These results reveal that the ground state of the YMnO3

can be described by the coexistence of E-type and cy-
cloidal states, while the E-type state is a dominant source
for the large electric polarization of 0.8 µC/cm2 by the
symmetric exchange striction.

The thin film (40 nm) of YMnO3 was grown on a
YAlO3 (010) substrate by pulsed-laser deposition. The
details of the sample fabrication were described elsewhere
[12]. Resonant soft x-ray diffraction experiments were
performed on the RESOXS endstation [18] at the sur-
faces/interfaces microscopy (SIM) beamline of the Swiss
Light Source of the Paul Scherrer Institut, Switzerland.
For the azimuthal scans (rotation around the Bragg scat-
tering wave vector), the sample transfer line was used
to rotate the sample holder. With pins attached in a
threefold symmetry on the sample holder, an accuracy of
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approximately 5 deg was obtained. A continuous helium-
flow cryostat allows measurements between 10 and 300
K. Hard x-ray diffraction experiments were performed
on beamlines 3A and 4C at the Photon Factory, KEK,
Japan. The photon energy of the incident x-ray was 12
keV.

Figure 1 shows the temperature dependence of the (0
qb 0) (qb ∼ 0.5) peak with π (a) and σ (b) incident x-ray
polarizations. The experimental geometry is shown in
Fig. 1 (c), together with the definition of the azimuthal
angle ϕ. Here the diffraction data were taken with ϕ = 0◦

at hν = 643.1 eV (Mn 2p3/2 → 3d absorption edge). We
measured in both cooling and heating cycles, and ob-
served no hysteresis behavior. This peak, which is in-
dicated by vertical bars, appears at 45 K, which coin-
cides with the antiferromagnetic transition temperature
TN determined from magnetization measurements [12].
Weaker peaks are observed on both sides of the reflec-
tion. These are antiferromagnetic Kiessig fringes, and
describe the limited thickness of the magnetic contrast
of the film. There is almost no difference between π (a)
and σ (b) polarizations. The intensity of the peaks in-
creases monotonically with cooling. The peak position
deviates from the commensurate qb = 1/2 position for all
temperatures. The peak position shifts to higher angle
for decreasing temperatures; the temperature variation of
the corresponding wave vector and intensity is summa-
rized in Fig. 2. The intensity increases monotonically and
smoothly with decreasing temperatures from TN = 45 K.
The peak position, e.g. qb = 0.457 at 44 K and 0.491 at
11 K, is temperature-dependent and always incommen-
surate (6= 1/2) in the temperature range of 11 - 44 K.
In TbMnO3 the peak position is also incommensurate,
but lock to the value of qb = 0.285 at the ferroelectric
transition temperature TC = 28 K [14, 15]. Such a be-
havior is not observed in this YMnO3 film; there is no
locking of the peak position at TC = 40 K, which was de-
termined from electric polarization measurements [12].
Also we would like to note that the qb-positions of the
peaks are different from the values of 0.42− 0.44 in bulk
YMnO3 [13]. We consider that this is difference is due to
the strain effects caused by the substrate. Strain effects
were previously found to be important for magnetism in
YMnO3 thin films [19].

Figure 3 shows the intensity of the (0 qb 0) (qb ∼ 0.5)
peak as a function of photon energies at the Mn 2p →
3d absorption edge at 44 K (a) and 11 K (b). There
is no polarization dependence at this scattering geome-
try of ϕ = 0◦ at both temperatures. In addition, the
spectral shape is identical at these two temperatures
and very similar to the one observed for TbMnO3 and
Eu3/4Y1/4MnO3 bulk single crystals [14–16]. This shows
that the line shape of the spectrum does not depend on
the values of qb but is rather common in multiferroic o-
RMnO3. In the case of TbMnO3 and Eu3/4Y1/4MnO3

[14–16], the intensity at Mn 2p3/2 is more suppressed
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FIG. 1: (Color online): Temperature dependence of the (0 qb
0) (qb ∼ 0.5) peak in π (a) and σ (b) incident x-ray polariza-
tions. The intensity of the peaks increases monotonically with
cooling. Panel (c) shows the experimental geometry with the
definition of the azimuthal angle ϕ. In panels (a) and (b), the
data were taken with ϕ = 0◦ at hν = 643.1 eV (Mn 2p3/2 →

3d absorption edge).
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FIG. 2: (Color online): Temperature dependence of the (0
qb 0) (qb ∼ 0.5) peak position (a) and intensity (b). The
experimental geometry and the photon energy are the same
as Fig. 1. In panel (a), the commensurate position of qb = 1/2
is shown as a dotted line.

compared to the 2p1/2 due to serious self-absorption ef-
fects in bulk samples.

To gain more information on the spin structure, it is
important to study the magnetic reflection with linear
polarized incident radiation for different azimuthal an-
gles. The ϕ (azimuthal angle) dependence of the in-
tensity of the magnetic (0 qb 0) reflection is shown in
Fig. 4. For ϕ = 0◦, the intensities are identical for π and
σ polarizations within experimental uncertainty. When
ϕ increases from 0◦ to 90◦, the intensity increases with
incident π polarization and decreases with incident σ po-
larization. The azimuthal-angle dependence allows us to
gain information on the directions of the Mn spins. In
the electric-dipole transition, the magnetic contribution
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FIG. 3: (Color online): Intensity of the (0 qb 0) (qb ∼ 0.5)
peak as a function of photon energies at the Mn 2p → 3d
absorption edge at 44 K (a) and 11 K (b).

to the structure factor is given as

f res
mag ∝ (ǫ̂′ × ǫ̂) · ẑ,

where ǫ̂ and ǫ̂′ are unit vectors of the incident and scat-
tered polarization, respectively, and ẑ is a unit vector in
the direction of the magnetic moment of the ion [20, 21].
We use the notations in Fig. 1 in Ref. [21] which lead to
the following expression,

(ǫ̂′× ǫ̂) · ẑ =

(

0 z1 cos θB + z3 sin θB
z3 sin θB − z1 cos θB −z2 sin 2θB

)

Here θB is the Bragg angle for the (0 qb 0) reflection.
When the magnetic Fourier components contribute only
along the c axis, z1 = cosϕ, z2 = sinϕ, and z3 = 0. Then
the intensity for π and σ incident polarizations are given
with θB ∼ 51.5◦ at 30 K.

I(π) = |I(π → σ′)|2 + |I(π → π′)|2

= | cosϕ cos θB|
2 + | sinϕ sin 2θB|

2

∼ 0.95− 0.56 cos2 ϕ

I(σ) = |I(σ → π′)|2

= | cosϕ cos θB|
2

∼ 0.39 cos2 ϕ

The values of these equations are shown as solid lines in
Fig. 4, and are in good agreement with our experimen-
tal observations. This reflects an ab cycloid with a spin
canting along the c-axis as shown in Fig. 5, and indicates
that the experiment is only sensitive to its magnetic si-
nusoidal c axis component.
In order to investigate the lattice distortions associ-

ated with magnetic order and electric polarization, we
additionally performed hard x-ray diffraction measure-
ments of the YMnO3 thin film. The commensurate (0
1 0) reflection appears below 35 K as shown in Fig. 6.
This reflection is a structurally forbidden in the chem-
ical high-temperature structure (Pbnm) and caused by
the lattice distortion accompanying ferroelectricity. In-
terestingly, no incommensurability of this reflection is ob-
served by hard x-ray diffraction, in clear contrast to the
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FIG. 4: (Color online): Azimuthal angle dependence of the (0
qb 0) (qb ∼ 0.5) intensity. The solid lines are from the model
with spins parallel to the c axis.
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FIG. 5: (Color online): Spin structures in the E-type (a)
and the ab-cycloidal (b) states. Spin canting along the c axis
makes the magnetic (0 qb 0) peak have some intensity.

observed magnetic reflection. Moreover, this reflection
does appear below 35 K, at lower temperatures than the
onset of the magnetic reflection, in accord with the step
onset of the spontaneous electric polarization [12], as can
be seen from the temperature-dependent integrated in-
tensity shown in Fig. 6 (b).

We can obtain a full picture of the magnetic states of
the epitaxial YMnO3 thin film by combining the above
results with the macroscopic measurements of magnetiza-
tion and electric polarization [12]. From the macroscopic
measurements, three transitions were observed: antifer-
romagnetic transition at TN = 45 K, ferroelectric tran-
sition at TC = 40 K, and an increase of electric polar-
ization at 35 K. The incommensurate magnetic peak was
observed at all temperature below 45 K. It reflects spin
moments solely along the c axis as indicated by its x-
ray polarization and azimuthal dependence. This sup-
ports the scenario that in the temperature range of 40
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FIG. 6: (Color online): Temperature dependence of the (0
1 0) peak taken at hν = 12 keV. In panel (b), peak inten-
sities are plotted as a function of temperature together with
the electric polarization (broken lines) taken from Ref. [12].
The temperature of 35 K is also indicated as the onset of the
(0 1 0) peak and the step onset of the spontaneous electric
polarization.

- 45 K a sinusoidal state with a spin canting along the
c axis is realized. Note that the in-plane magnetic mo-
ment components cancel for this magnetic wave vector
in the structure factor. This state is also consistent with
the absence of observed electric polarization in this tem-
perature regime (see Fig. 6 (b)). By cooling through 40
K, the sinusoidal magnetic phase transforms into a cy-
cloidal magnetic structure with significant magnetic mo-
ment contributions along the c axis. Below 35 K, we
can observe both the incommensurate magnetic reflection
and the commensurate lattice-distortion reflection. This
state can be therefore explained by the coexistence of the
cycloidal and the E-type states as theoretically predicted
in Ref. [22]. In this coexistence region, magnetic reflec-
tion is incommensurate as shown in Ref. [22] and lattice
peaks are commensurate because the E-type phase has a
much larger lattice distortion than the cycloidal phase.
The existence of the E-type phase causes the large elec-
tric polarization of 0.8 µC/cm2 due to the symmetric ex-
change striction [12]. In other words, the weak polariza-
tion emerging at 40 K from the cycloidal magnetic struc-
ture causes also weak lattice distortion, which is too weak
to be observed in our experiment. On the other hand,
the large induced electric polarization below 35 K caused
by the E-type structure induces a significant lattice dis-
tortion, as observed by the x-ray diffraction experiments
on a YMnO3 single crystal [23]. However, spin canting
in its magnetic structure is so small that no additional
magnetic contribution is observed in our experiment. It
is difficult to distinguish between the occurrence of ab-
and bc-cycloids based on our experimental data. How-
ever, electric polarization is parallel to the a axis [12],
which clearly indicates the ab-cycloid. The ab-cycloids
can easily adopt a spin canting along the c axis, whereas
bc-cycloids would get anisotropically distorted. The real-
space picture of spin configuration in the coexisting phase
was already obtained by Monte Carlo simulations, which
show that the E-type and the cycloidal phases coexist in
the scale of ∼ 20 unit cells [24].
In summary, we investigated the magnetic structures

of the YMnO3 thin film by resonant magnetic soft x-ray
and hard x-ray diffraction. We observed temperature-
dependent incommensurate magnetic peaks below 45 K
and commensurate lattice-distortion peaks below 35 K,
indicating that E-type and cycloidal states coexist below
35 K. This shows that the occurrence of the large electric
polarization below 35 K is directly related to E-type mag-
netic ordering component in the epitaxial YMnO3 films.
Note also that our polarization value of 0.8 µC/cm2 is
one order of magnitude smaller than the value predicted
in the previous first-principles calculation for bulk mate-
rials [25]. The strain effect from substrates inherent to
thin-film samples is a possible reason for this deviation.
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