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The quintessential two-dimensional lattice model that describes the competition between the
kinetic energy of electrons and their short-range repulsive interactions is the repulsive Hubbard
model. We study a time-reversal symmetric variant of the repulsive Hubbard model defined on a
planar lattice: Whereas the interaction is unchanged, any fully occupied band supports a quantized
spin Hall effect. We show that at 1/2 filling of this band, the ground state develops spontaneously
and simultaneously Ising ferromagnetic long-range order and a quantized charge Hall effect when the
interaction is sufficiently strong. We ponder on the possible practical applications, beyond metrology,
that the quantized charge Hall effect might have if it could be realized at high temperatures and
without external magnetic fields in strongly correlated materials.

High-temperature superconductivity [1] and the quan-
tum Hall effect (QHE) [2] have been two of the cen-
tral problems in condensed matter physics of the last
three decades. The former is related to electrons hop-
ping on a two-dimensional (2D) lattice close to (but not
at) half-filling, while the latter focuses on fermions in
doped semiconductor heterostructures or graphene in a
high magnetic field. High-temperature superconductors
are strongly interacting systems, with the potential en-
ergy about an order of magnitude larger than the kinetic
energy. In the QHE, the kinetic energy is quenched by
the external magnetic field. Moreover, interactions are
important only in understanding the fractional QHE but
not in understanding the integer QHE (IQHE).

The possibility that the IQHE could arise in a lat-
tice Hamiltonian without the Landau levels induced by
a uniform magnetic field was suggested by Haldane in
1988 [3]. The essence is that, despite the absence of
an uniform magnetic field, the system still lacks time-
reversal symmetry. More recently, it was shown that
the fractional QHE could also emerge in flat topologi-
cal bands when they are partially filled [4–9]. These re-
cent developments point to a natural marriage between
the QHE and strongly correlated lattice systems at high
filling fraction.

In this paper we study a quintessential strongly corre-
lated lattice 2D system but with a twist. We consider a
time-reversal symmetric fermionic Hubbard model in the
limit of large onsite repulsion U compared to the band-
width W of the hopping dispersion, but with hopping
terms yielding topologically non-trivial Bloch bands in
that they each support a quantized spin Hall conductiv-
ity when fully occupied [10]. The time-reversal symmet-
ric Hubbard model with a single half-filled nested Bloch
band has a charge insulating ground state that supports
anti-ferromagnetic long-range order [1]. In contrast, the
ground state of our time-reversal symmetric Hubbard
model with topologically non-trivial Bloch bands simul-

taneously displays Ising ferromagnetic long-range order
and the IQHE at some commensurate filling fraction.
The energy scales that can be attained in lattice mod-
els are typically rather high, of the order of atomic mag-
nitudes, i.e., electronvolt. If an interacting system with
topological bands can be found so as to display the IQHE
at high temperatures, it could be of practical use, as we
shall explain after we substantiate our claims.
Study of the topological Hubbard Model: We consider

spinful electrons hopping on a bipartite square lattice
Λ = A∪B with sublattices A and B, where each sublat-
tice has N := Lx × Ly sites. The Hubbard Hamiltonian
with repulsive interactions (U > 0) can be written

H :=
∑
k∈BZ

c†kHk ck + U
∑
r

∑
α=A,B

nr,↑,αnr,↓,α. (1a)

The component c†k,σ,α of the operator-valued spinor c†k
creates an electron with momentum k from the Brillouin
zone (BZ) of sublattice A and with spin σ =↑, ↓, whose

Fourier transform c†r,σ,α = N−1/2
∑

k∈BZ e
−ik·r c†k,σ,α is

exclusively supported on sublattice α = A,B. The 4× 4
Hermitean matrix Hk obeys the time-reversal symmetry
(TRS)

H+k = σ2H∗−k σ2, (1b)

and, owing to a strong intrinsic spin-orbit coupling, the
residual spin-rotation symmetry (RSRS)

H+k = σ3H+k σ3 ≡

(
h

(↑)
k 0

0 h
(↓)
k

)
, (1c)

where the Pauli matrices σ1, σ2, and σ3 act on the elec-
tronic spin-1/2 degrees of freedom. Hence, the two 2× 2

Hermitean matrices h
(σ)
k with σ =↑, ↓ obey

h
(↑)
+k,αβ = h

(↓)
−k,βα, ∀k ∈ BZ, α, β = A,B, (1d)
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because of the condition of TRS (1b). Finally, the oper-
ator nr,σ,α = c†r,σ,αcr,σ,α measures the electron density
on site r in sublattice α and with spin σ.

The Hubbard Hamiltonian defined by Eq. (1a) thus
has a global Z2 × U(1) symmetry that arises because of
the TRS (1b) and the RSRS (1c). We are going to show
that TRS is spontaneously broken while the continuous
RSRS is shared by the ground state, when this Hubbard
Hamiltonian acquires suitable topological properties.

It is the choice for the matrix elements h
(σ)
k,αβ entering

the kinetic energy (1c) that endows the Hubbard Hamil-
tonian (1a) with topological attributes. We choose

h
(↑)
k,AB = h

(↑)∗
k,BA := wk

[
e−iπ/4

(
1 + e+i(ky−kx)

)
+e+iπ/4

(
e−ikx + e+iky

)]
,

h
(↑)
k,AA = −h(↑)

k,BB := wk

[
2t2(cos kx − cos ky) + 4µs

]
,

(2a)

where

w−1
k := κ εk + (1− κ), κ ∈ [0, 1], (2b)

and

εk :=
√

1 + cos kx cos ky + [2t2 (cos kx − cos kx) + 4µs]
2
.

(2c)
In the non-interacting limit (U = 0), this model fea-
tures four bands with two distinct two-fold degenerate
dispersions ±wkεk [4]. This two-fold degeneracy is a
consequence of the Kramers degeneracy implied by the
TRS (1b). If we denote the corresponding eigenspinors
χk,σ,λ = (χk,σ,λ,α) where λ = ± and choose the normal-

ization χ†k,σ,λχk,σ,λ′ = δλ,λ′ , ∀k, then the kinetic energy
is diagonalized using the fermionic creation operators

d†k,σ,λ :=
∑

α=A,B

χ∗k,σ,λ,αc
†
k,σ,α, (2d)

as

H0 :=
∑
k∈BZ

∑
σ=↑,↓

∑
λ=±

λ d†k,σ,λ wkεk dk,σ,λ. (2e)

Hence, the Bloch states created by d†k,σ,λ are generically
spread on both sublattices A and B. We shall only con-
sider the case in which these bands are separated by an
energy gap, i.e., |t2| 6= |µs|. The parameter κ controls
the bandwidth of these bands. For κ = 1, the bands are
exactly flat with eigenvalues ±1. The case κ = 0 cor-
responds to a tight-binding model on the square lattice
that involves only nearest-neighbor (|t1| = 1) and next-
nearest-neighbor hopping (t2) together with a staggered
chemical potential µs that breaks the symmetry between
sublattices A and B [4]. For κ ∈ (0, 1] longer range hop-
ping is introduced. However, we stress that the Hamil-
tonian remains local for all κ ∈ [0, 1] since all correlation

functions decay exponentially due to the presence of the
band gap [4].

The topological properties of the lower pair of bands
are characterized by their spin Chern number

Cs :=
(
C↑ − C↓

)
/2, (3a)

where Cσ is to be computed from the orbitals of spin-σ
electrons according to

Cσ :=

∫
k∈BZ

d2k

2πi
∇k ∧

(
χ†k,σ,−∇kχk,σ,−

)
. (3b)

Time reversal symmetry implies C↑ = −C↓ and therefore
entails a vanishing of the total (charge) Chern number
Cc := (C↑ + C↓)/2 of the lower bands. The spin Chern
number of the lower pair of bands is given by

Cs =
1

2

(
sgnh

(↑)
(0,π),AA − sgnh

(↑)
(π,0),AA

)
. (3c)

Hence, the Bloch bands are topologically trivial when-
ever |t2/µs| < 1, while the model at half filling exhibits
the physics of a quantum spin Hall insulator whenever
|t2/µs| > 1. In an open geometry, the spin Hall conduc-
tivity is quantized to the value σsH

xy = eCs/(2π) where e
denotes the electric charge of the electron.

We now consider the system with a repulsive Hubbard
interaction U > 0 at 1/2 filling of the lower band (1/4
filling of the lower and upper bands), i.e., with

Ne = Lx × Ly = N (4)

electrons. In all what follows, we assume that U is much
smaller than the gap ∆0 induced by a strong intrinsic
spin-orbit coupling between the two pairs of bands. If
so, we can restrict the Ne -body Hilbert space to the Fock
space arising from the single-particle Hilbert spaces of the
lower pair of bands.

In the limit of flat bands κ = 1 and at the commensu-
rate filling fraction (4), the kinetic energy (2e) at fixed
spin polarization S := |〈σ3〉| = 0, 2, ..., N in units of ~/2
has a ground state degeneracy

Ngs =

(
N

N−|S|
2

)2

. (5)

The repulsive Hubbard interaction lifts this degeneracy
whenever any one of these states allows a site of Λ to be
doubly occupied with a finite probability. The only two
states with full spin-polarization S = N

|Ψσ〉 =
∏

k∈BZ

d†k,σ,−|0〉, σ =↑, ↓, (6a)

are immune to the presence of the Hubbard repulsion.
More formally, observe that Hamiltonian H − µNe is a
positive semidefinite operator for κ = 1, U > 0, and the
chemical potential µ = −1. Since

〈Ψσ| (H +Ne ) |Ψσ〉 = 0, σ =↑, ↓, (6b)
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the two states (6a) belong to the ground state manifold
of H +Ne for any U > 0, t2, and µs.

We are going to argue that this pair of degenerate Ising
ferromagnets spans the ground state manifold for any
U > 0 and |t2/µs| 6= 1. This is achieved by arguing
that they are separated from excited states by a many-
body gap, a departure from the usual ferromagnetism
in flat bands when full spin-1/2 SU(2) symmetry is not
explicitly broken [11]. First, particle-hole excitations of
|Ψσ〉 that keep S = N fixed, cost an energy ∆0 > 0 and
are thus gaped. Second, we ask whether excitations of
|Ψσ〉 that flip one spin (S = N − 2) are gaped as well.
Any such state can be written as

|Φσ,Q〉 =
∑
k∈BZ

A
(Q)
k d†k+Q,σ̄,−dk,σ,−|Ψσ〉, σ =↑, ↓,

(7a)
where the center of mass momentum Q is a good quan-
tum number and thus 〈Φσ,Q|Φσ,Q′〉 = δQ,Q′ if the nor-

malization
∑

k∈BZA
(Q)∗
k A

(Q)
k = 1 is imposed. One veri-

fies that [12]

〈Φσ,Q| (H +Ne ) |Φσ,Q〉

= U − U

N

∑
α

∣∣∣∣∣ ∑
k∈BZ

A
(Q)
k χ−k−Q,σ,−,αχk,σ,−,α

∣∣∣∣∣
2

,

(7b)

where the lowest energy state with one spin flipped is

characterized by the A
(Q)
k that minimizes Eq. (7b) while

satisfying the normalization condition. For example, if
the single-particle orbitals are fully sublattice polarized,
e.g., χ†k,σ,− ∝ (1, 0) (topologically trivial), the choice

A
(Q)
k = N−1/2 minimizes Eq. (7b) with the right-hand

side equal to zero. Hence, the fully spin-polarized state
|Ψσ〉 is a gapless ground state in this case. On the other
hand, let us assume that

χ†k,σ,− 6∝ (1, 0) and χ†k,σ,− 6∝ (0, 1) (8)

holds almost everywhere in the BZ, i.e., up to a set
of measure zero. In the thermodynamic limit, where
the sum over k becomes an integral, this delivers from
Eq. (7b) the strict inequality [12]〈

Φσ,Q |(H +Ne )|Φσ,Q
〉
> 0. (9)

Hence, assumption (8) is sufficient to show that the spin-
polarized state |Ψσ〉 is a gaped ground state of the Hamil-
tonian with flat bands in the thermodynamic limit, pro-
vided that one also assumes that the lowest energy states
with more than one spin flipped are higher in energy than
those with one spin flipped.

Ruling out the possibility that states with many spin
flips have lower energies than states with few spin flips
relative to the Ising ferromagnetic ground state is plau-
sible in the regime when the intrinsic spin-orbit coupling
generates the largest energy scale (∆0 � U).

Equation (8) is a reasonable assumption when the
Bloch states stem from a band with non-zero (spin)
Chern number, since the spinor χk,σ maps out the entire
surface of the unit sphere as k takes values in the BZ. The
assumption underlying Eq. (8) can also be understood by
constructing the Wannier wavefunctions, centered at the
lattice point z, of the lowest energy band with spin σ and
Chern number Cσ

ψz,r,σ,−,α :=
1

N

∑
k∈BZ

eik·(r−z) χk,σ,−,α. (10a)

The gauge invariant part of their spread functional [13]
satisfies

〈ψ0,σ,− | r2|ψ0,σ,− 〉 −
∑
z

| 〈ψ0,σ,− | r|ψz,σ,− 〉 |2

≥ |Cσ| Ac/(2π),

(10b)

where Ac denotes the area of the unit cell. This inequal-
ity relates the Chern number of the band and the “min-
imum width” of the Wannier states [12]. In particular,
in the non-topological phase, one can imagine a limit
in which the wavefunction is entirely localized on a given
sublattice, while the non-zero Chern number in the topo-
logical phase implies that the Wannier wavefunction has
amplitudes on both sublattices.

While Eq. (9) is strongly suggestive of the existence
of a many-body gap ∆, it does not provide informa-
tion about its size. To quantify ∆, we diagonalized the
model (1) exactly numerically in the limit of flat bands
κ = 1 at the commensurate filling fraction (4). We varied
the ratio |t2/µs|, keeping t22 +µ2

s = 1/2 constant to drive
the system from the topological to the trivial phase. The
results are shown in Fig. 1. First, they support the as-
sumption that all states with more than one spin flipped
are higher in energy than the many-body one-spin-flipped
gap provided |t2/µs| > 1. Second, we find ∆ ≈ 0.3U as
an extrapolation to the thermodynamic limit for µs = 0
deep in the topological phase, while ∆ monotonously de-
creases toward a much smaller non-vanishing value for
t2 = 0 in the topologically trivial phase set by the unit of
energy |t1| = 1. Finally, it should be noted that neglect-
ing the states from the upper band of the non-interacting
Hamiltonian delivers the correct excitation many-body
gap ∆ not only in the aforementioned limit U � ∆0, but
also under the weaker condition ∆ < ∆0, if the limit of
flat bands is taken.

Deep in the topologically non-trivial regime |t2/µs| �
1, the states |Ψσ〉 and |Ψσ̄〉 are degenerate ground states
related by TRS for any finite N . They are separated
from their excitations by a gap that survives the thermo-
dynamic limit N → ∞. Spontaneous breaking of TRS
takes place in the thermodynamic limit N → ∞ by se-
lecting the ground state to be |Ψ↑〉, say. It is then mean-
ingful to discuss the quantized electromagnetic response
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FIG. 1: Numerical exact diagonalization results for flat
bands κ = 1 at the commensurate filling fraction (4). Mark-
ers show the energy of the lowest state in different sectors
of total spin S (in units of ~/2) measured with respect
to the ground state energy for Lx = 3, Ly = 4. Here,
g := (2/π)arctan|µs/t2| so that g > 0.5 and g < 0.5 cor-
respond to the trivial and topological single-particle bands,
respectively. Since there is only one state in the fully polar-
ized sector |S| = 12, the difference between the asterisks and
the squares is the many-body excitation gap ∆(g). The thick
blue line shows the extrapolation of ∆(g) to the thermody-
namic limit. In the inset, exact diagonalization in the sector
with one spin flipped away from the fully polarized sector is
presented for µs = 0, t2 = 1/

√
2 and Lx = Ly ranging from 6

to 30. The straight lines are guide to the eye and make evident
an even-odd effect in Lx = Ly. Deep in the topologically non-
trivial regime g � 0.5, we observe a sizable ∆(g � 0.5). The
topologically trivial regime g > 0.5 is also characterized by a
gap ∆(g > 0.5) in the sector with one spin flipped away from
the fully polarized sector, however this gap is much smaller
than ∆(g � 0.5). We refer the reader to the supplementary
material for a discussion of the regime ∆(g > 0.5).

of |Ψ↑〉 since TRS is spontaneously broken. The trans-

verse charge response σH
xy of |Ψ↑〉 is proportional to the

many-body Chern number C|Ψ↑〉
. The latter takes into

account the occupation of the Bloch states [4]. Since all
Bloch states of the lower band with spin σ are occupied
in |Ψ↑〉, while all Bloch states with spin ↓ are empty,
C|Ψ↑〉

≡ C↑. Hence, the ground state has the quantized

Hall response

|σH
xy| = |C↑| × e2/h = e2/h. (11)

Remarkably, the selection by the repulsive Hubbard
interaction of a ground state supporting simultaneously
Ising ferromagnetism and the IQHE is robust to a sizable
bandwidth as is suggested by numerical exact diagonal-
ization. As shown in Fig. (2), the fully spin-polarized
state |Ψσ〉 remains the gaped ground state of the system
up to a bandwidth W/U ≈ 0.7.

Practical applications: So what is it good for, a ma-
terial with a QHE at room temperature without applied
external magnetic fields besides metrology [15, 16]? First,
we recall that the quantization of the Hall resistance
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FIG. 2: (Color online) Numerical exact diagonalization re-
sults at the commensurate filling fraction (4) as a function of
the bandwidth W for Lx = 3, Ly = 4. Plotted is the energy
of the lowest state in different sectors of total spin S (in units
of ~/2) measured with respect to the ground state energy in
the topological phase with µs = 0, t2 = 1/

√
2. The ground

state is gaped and fully spin-polarized for W/U < 0.7, while
it is unpolarized for W/U > 0.7 [14].

and the accompanying vanishing of the longitudinal re-
sistance is only exact at zero temperature. The longi-
tudinal resistance increases exponentially fast with in-
creasing temperature [16]. However, if a QHE with gaps
of the order of hundreds of meV even eV scales could
arise in a strongly correlated lattice material, exception-
ally low resistivities could be attained. The resistance
of a Hall bar depends on its aspect ratio and the Hall
angle δ = arctan(ρxy/ρxx) [17], but for long systems
(“wires”) near the quantized regime, the longitudinal re-
sistance scales as Rxx = L/W ρxx, and the 2D resistivity
ρxx ∼ RK e−∆/T , where ∆ is the excitation gap. For
gaps of the order of 100 meV to 1 eV, one would obtain
room temperature 2D resistivities from ρxx ∼ 103 Ω to
ρxx ∼ 10−13 Ω, respectively. Obviously the exponential
behavior is responsible for this gigantic range. Small as
they are, these are not perfect conductors. For a bench-
mark, we consider the conductivity of copper at room
temperature per atomic layer. Using the value for the 3D
resistivity of copper at 20◦C of ρ3D

Cu = 1.68 × 10−8 Ω m
[18] and that the lattice parameter for FCC lattice is
3.61Å, we obtain ρ2D

Cu = 93.3 Ω. Therefore, for gaps above
∆ ≈ .2 eV, the Hall system starts to be better conducting
than copper at room temperature, and for ∆ ≈ .3 eV it
is already almost three orders of magnitude better con-
ducting than copper.

The RSRS (1c) is not exact in practice. For example,
a Rashba spin-orbit coupling violates this RSRS. How-
ever, our analysis of transport at room temperature still
applies provided the characteristic energy scale associ-
ated to the breaking of the RSRS (1c) is much smaller
than the largest energy scale ∆0 induced by the intrinsic
spin-orbit coupling. Materials that realize a 2D Z2 topo-
logical band insulator [19, 20] with a band gap ∆0 are
thus candidates to realize a QHE at room temperature if
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(i) the band gap is larger than the correlation energy and
(ii) the chemical potential can be tuned to half-filling of
(iii) a reasonably flat valence band. HgTe quantum wells
with an inverted band structure realize 2D Z2 topologi-
cal band insulator with a small Rashba coupling [21, 22].
The design of a material with the functionalities (i)-(iii)
has been proposed in Ref. 8 . Cold atoms trapped in an
optical honeycomb lattice [23, 24] might offer an alterna-
tive to realizing the topological Hubbard model discussed
in this Letter.

We would like to close by mentioning that examples
such as the topological Hubbard model discussed in this
Letter, as well as lattice models displaying the FQHE
studied in Refs. 4–7, could serve as benchmarks for nu-
merical methods of fermionic models in 2D such as Dy-
namical Mean-Field Theory (DMFT) and methods based
on Tensor Product States (TPS) [25]. In contrast to the
single-band repulsive Hubbard model, for which little is
known exactly at fractional filling, the topological Hub-
bard model (1), because of the non-vanishing Chern num-
bers of its bands, leads to much better understood (topo-
logical) ground states. It can thus serve as a yardstick
for the performance of these methods.

This work was supported in part by DOE Grant
DEFG02-06ER46316 and by the Swiss National Science
Foundation.
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