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We study transport in three dimensional Weyl semimetals with N isotropic Weyl nodes in the
presence of Coulomb interactions or disorder at temperature T . In the interacting clean limit,
we determine the conductivity by solving a quantum Boltzmann equation within a ‘leading log’
approximation and find it to be proportional to T , upto logarithmic factors arising from the flow of
couplings. In the noninteracting disordered case, we compute the finite-frequency Kubo conductivity
and show that it exhibits distinct behaviors for ω ≪ T and ω ≫ T : in the former regime we recover
the results of a previous analysis, of a finite conductivity and a Drude width that vanishes as NT 2;
in the latter, we find a conductivity that vanishes linearly with ω whose leading contribution as

T → 0 is the same as that of the clean, non-interacting system σ(ω,T = 0) = N e
2

12h

|ω|
vF

. We compare

our results to experimental data on Y2Ir2O7 and also comment on the possible relevance to recent
transport data on Eu2Ir2O7.

There has been a surge of recent activity studying
Dirac excitations in two dimensional media, most fa-
mously graphene [1]. A natural question is whether there
are analogs in three dimensions, with a vanishing density
of states at the chemical potential and linearly dispersing
excitations. It has long been known that touchings be-
tween a pair of non-degenerate bands are stable in three
dimensions, and typically have linear dispersion. Near
these, electronic excitations are described by an analog
of the Weyl equation of particle physics, which describes
two-component chiral fermions [2–4]. Hence these states
have been dubbed Weyl semi-metals (WSMs) [5].

To remove a band touching (or Weyl node) one neces-
sarily must connect to another node. This is in contrast
with two dimensions: graphene’s nodes can be gapped
by different intranode perturbations that break inversion
(I) or time reversal (T ) symmetry. The enhanced protec-
tion in three dimensions is due to a topological property
of the nodes - they are sources (monopoles) of Chern
flux in the Brillouin zone (BZ). This momentum space
topology is associated with several physical phenomena.
In particular, it was recently realized [5] that unusual
surface states will result as a consequence of the band
topology. These take the form of Fermi arcs that con-
nect the projections of the nodes onto the surface BZ.
Such topological properties are sharply defined as long
as one can distinguish band touching associated with op-
posite Chern flux. The presence of translation symme-
try, and hence conserved crystal momenta, is sufficient to
protect these defining properties since the nodes are sepa-
rated in the BZ. In principle one needs perfect crystalline
order to define these phases; in practice, smooth disor-
der that only weakly mixes nodes is expected to have
little effect. Other manifestations of the band topol-
ogy include an anomalous Hall effect [6, 7] that is tied
to the momentum space displacement between nodes,
and magneto-resistance arising from Adler-Bell-Jackiw
anomaly of Weyl fermions [4, 8].

Physical realizations of WSMs require non-degenerate

bands to touch; therefore spin degeneracy must be lifted
(by either spin-orbit interactions or magnetic order), and
either T or I must be broken: otherwise, all bands
would be doubly degenerate. We further require that the
Fermi ‘surface’ consists exactly of the Weyl nodes. In T -
breaking realizations where I is unbroken, a simple ‘par-
ity criterion’ applied to eight T -invariant momenta in the
BZ can be used to diagnose the existence of Weyl nodes
[9]. In [5], certain pyrochlore iridates A2Ir2O7 (A=Y or
Eu), were proposed to be magnetically ordered WSMs,
with N = 24 Weyl points, all at the Fermi energy; [10]
reached similar conclusions but with N = 8. Alternate
proposals include HgCr2Se4 in the ferromagnetic state
[11] and topological insulator-ferromagnet heterostruc-
tures [7], with N = 2, the minimum allowed.

Motivated by the availability of transport data on the
iridates [12, 13], we study the electrical conductivity of
an idealized model of a WSM, with an even number N
of isotropic Weyl nodes characterized by the same dis-
persion, with N/2 nodes of each chirality as required
by topology [5, 14]. The leading behavior of the con-
ductivity σ provides insight into the dominant scattering
mechanism in the system, as in three dimensions, σ has
dimensions of inverse length in units of e2/h and the ap-
propriate length scale is set by the quasiparticle mean
free path. In the absence of impurities and interactions

we expect the free fermion result, σ
(N)
0 (ω) = N e2

12h
|ω|
vF

;
we demonstrate how this is modified in two cases:

(i) in clean undoped systems with Coulomb interactions,
current is carried equally by counterpropagating elec-
trons and holes and can be relaxed via interactions alone.
Solving a quantum Boltzmann equation (QBE) we find
a finite conductivity proportional to the temperature T
(upto logarithmic factors), as expected of a quantum crit-
ical system [15], where T is the sole energy scale,

σ
(N)
dc (T ) =

e2

h

kBT

~vF (T )

1.8

α2
T lnα−1

T

(1)
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Here vF (T ) = vF (α0/αT )
2

N+2 and αT =

α0

[

1 + (N+2)α0

3π ln
(

~Λ
kBT

)]−1

are the Fermi velocity

and fine structure constant renormalized to the scale
of the temperature T , Λ is a momentum cut-off set by
the separation between the Weyl nodes, and vF and
α0 = e2/ε~vF are the corresponding ‘bare’ values at the
microscopic scale [16].

(ii) In the presence of impurities, power counting shows
that white-noise disorder is an irrelevant perturbation,

and a naive expectation is that the clean result σ
(N)
0 is

reproduced. However, the result is more interesting: by
evaluating a standard Kubo formula, we find that the
finite-frequency conductivity exhibits different behaviors
for ω ≪ T and ω ≫ T : in the former regime we find
in agreement with [7] a finite Drude-like response with a
peak width vanishing as NT 2; in the latter, we recover

σ
(N)
0 as the leading behavior, which is universal and in-

dependent of disorder. We also determine the manner in
which the conductivity interpolates between these limits.

Previous studies of 3D Dirac points have assumed
Lorentz invariance [17] or worked at a topological phase
transition between insulators [18]. Although our work
differs from both of these situations – instantaneous
Coulomb interactions break Lorentz invariance, and we
study a stable phase – there are sufficient parallels that
a similar ‘leading log’ approximation suffices to solve the
QBE. Coulomb interactions also lead to a finite dc con-
ductivity in clean graphene – the 2D analog of a WSM
– but the leading log approximation fails here and more
analysis is needed [15, 19].

The Model.- In a WSM, the electronic dispersion about
a Weyl node is generically of the form HWeyl = u ·

k 1 +
∑3

a=1 v
a · k σa, where σa are the Pauli matrices.

The velocities satisfy v1 · (v2 × v3) 6= 0, and the Chern
number ±1 (‘chirality’) associated with the Weyl node
is Sign

(

v1 · (v2 × v3)
)

. For simplicity, we shall drop
the term proportional to identity and assume isotropic
dispersion; relaxing this assumption should only pro-
duce small corrections. The Hamiltonian for a system
of N identically dispersing Weyl nodes (‘flavors’) with
Coulomb interactions and disorder may then be written
as H = H0 +HI +HD, with (repeated indices summed)

H0 =
∑

a

Ha =
∑

a

ˆ

k

ψ†
k,a (χavFk · σ)ψk,a

HI =
1

2

ˆ

k1k2q

V (q)ψ†
k2−q,aσψk2,aσψ

†
k1+q,bσ′ψk1bσ′

HD =

ˆ

r

∑

a,b

ψ†
a(r)U(r)ψb(r) (2)

where ψk,a is a two-component spinor in the (pseudo)spin
indices σ, σ′, a, b = 1 . . .N index the flavors, vF is the
Fermi velocity, which we set to unity, χa = ±1 is the chi-

rality of the ath Weyl node, V (q) = 4πe2

εq2 describes the

Coulomb interaction in a material with dielectric con-
stant ε, U(r) is a random potential with white-noise cor-
relations 〈〈U(r)U(r′)〉〉 = niv

2
0δ(r − r′) where v0 char-

acterizes the strength of the individual impurities and ni

their concentration,
´

k
≡
´

d3k
(2π)3 , and we have written

H0 assuming that the Fermi level is at the Weyl nodes,
which is the only case studied in this Letter. Here and
below we set ~ = kB = |e| = 1, and define β = 1/T .
Conductivity with Interactions.- Critical systems – such
as graphene and the WSM at neutrality– are exceptions
to the rule that disorder is essential for a finite conductiv-
ity, since they support current-carrying states in which
particles and holes transport charge with no net momen-
tum by moving exactly opposite to each other. In con-
trast to conventional finite-momentum charge transport,
such deviations from equilibrium can relax in the pres-
ence of interactions alone, leading to a finite conductivity.

We study transport in an interacting WSM by solving
a QBE for the thermal distribution function of quasipar-
ticle states. In doing so, it is convenient to first calculate
the current from a single node (but interacting with all
the nodes), before making the leap to the current carried
by all N nodes. We focus on a node with flavor a, which
we take to have χa = 1. The single-quasiparticle states
are obtained by diagonalizing Ha: ψk,a → W †ψk,a ≡

γk,a, Ha → WHaW
−1 =

´

k
λvF kγ

†
kλaγkλa, and are la-

beled by their helicity λ (the eigenvalue of σ · p̂.) From
now on we will suppress the index a. In general, oper-
ators corresponding to various transport properties are
not diagonal in the helicity; diagonal contributions cor-
respond to motion of particles and holes in the applied
field and may be characterized by appropriate distribu-
tion functions fλ(k, t) = 〈γ†kλγkλ〉, while the off-diagonal

terms (γ†λkγ−λk) describe the motion of particle-hole
pairs. For ω ≪ T , contributions of the latter to trans-
port are expected to be suppressed, essentially by Pauli
exclusion[16], and we drop them forthwith. In this ap-
proximation, it is therefore sufficient to solve the QBE
for quasiparticle distribution functions fλ(k, t), subject
to an external force F ,

(

∂

∂t
+ F · ∇k

)

fλ(k, t) = −w[fλ(k, t)] (3)

where w is the rate at which quasiparticles scatter out
of the state (λ,k) at time t, and captures the effect of
interactions. Our goal will be to determine the steady-
state form of the non-equilibrium quasiparticle distribu-
tion function. We will restrict ourselves to linear response
in F , i.e. we assume that the deviation of fλ from equi-
librium is small. The result is a linear functional equation
which may be recast as a variational problem. We solve
the latter approximately by identifying ‘leading log’ con-
tributions, which dominate the relaxation of the observ-
able under consideration. As mentioned, we assume that
the constants that enter the solution of (3) are renormal-
ized to the energy scale of interest, namely T .
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Neglecting particle-hole pair contributions, the cur-
rent is J(t) = −

´

k
〈ψ†

kσψk〉t = −
∑

λ=±

´

k
λk̂fλ(k, t).

For a weak applied electric field E(t), the deviation of
fλ(k, ω) =

´

dtf(k, t)eiωt from the equilibrium distribu-

tion function f0
λ(k) =

(

1 + eλβk
)−1

, and hence the con-
ductivity σ(ω, T ), can be parametrized [20] in terms of a
dimensionless, isotropic function g(k, ω):

fλ(k, ω) = 2πδ(ω)f0
λ(k)

+λβ2k̂ · E(ω)[f0
λ(k)f

0
−λ(k)]g(k, ω) (4)

σ(ω, T ) = 2β2

ˆ

k

[

k2x
k2

[f0
+(k)f

0
−(k)]g(k, ω)

]

(5)

It therefore remains only to determine the function
g(k, ω), to which we now turn. Inserting (4) into
(3), and working to linear order in E, we find

− (iβωg(k, ω) + 1) f0
+(k)f

0
−(k)k̂ = Ĉ

[

g(k, ω)k̂
]

where Ĉ

is the collision operator, a linear functional of g(k, ω)k̂
given in [16]. This is equivalent to the variational prob-
lem of extremizing the quadratic functional [15, 17–19]

Q[g] ≡

ˆ

k

[

1

2
g(k, ω)k̂ · (Ĉ[g(k, ω)k̂]) (6)

+f0
+(k)f

0
−(k)

(

iω
g2(ω, k)

2
+ g(ω, k)

)]

,

in which we have rescaled all momenta and frequencies
by T . A key simplification, known as the ‘leading log’
approximation (LLA) stems from the power-law nature
of the Coulomb interaction: as a result of this, logarith-
mically divergent small-momentum scattering dominates
Ĉ. We may write Ĉ = Ĉ0 + Ĉ1, which when thought of as
linear functionals of gk̂ have eigenvalues of O(α2 logα)
and O(α2), respectively. In the LLA we approximately

optimize Q by choosing gk̂ in the space spanned by eigen-
states of Ĉ0; as shown in [16] the choice g = kξ(ω) yields

Q[kξ(ω)] ≈
4

ε2

[

iω[ξ(ω)]2
7π4

30
+ 9ξ(ω)ζ(3)

]

−
4π3

9ε2
[ξ(ω)]2Nα2 lnα−1, (7)

optimized by ξ(ω) = 81ζ(3)
2π3

(

−iω 21π
10 +Nα2 lnα−1

)−1
.

Finally, we observe that the flipped chirality of half the
nodes is unimportant as they all give the same contri-
bution to σ; thus using the result for ξ(ω) in (5) and
multiplying by N we find the result for N nodes [21] ,

σ(N)(ω, T ) = N
e2

h

1.8

−i ~ω
kBT 6.6 +Nα2 lnα−1

(

kBT

~vF

)

(8)

Note that in the case of graphene, the LLA fails because
the log divergence stems from a phase space effect due
to enhanced scattering of collinear particles, which can-
not relax a current. Thus, the eigenstates of Ĉ0 do not
contribute to the relaxation, which therefore occurs only
via subleading, noncollinear scattering, i.e. Ĉ1 [15, 19].

In 3D, Ĉ0 includes noncollinear and thus current-relaxing
processes, so that the LLA analysis is sufficient [17, 18].

In the dc limit, (8) reduces to (1), which we may ratio-
nalize using the Einstein relation, σdc = e2D ∂n

∂µ , where

D = v2F τ is the diffusion constant, which depends on the
scattering time τ and ∂n

∂µ ∼ NT 2/v3F is the density of
states, at energy ǫ = T , upto numerical factors. We may
estimate τ from three observations: the scattering rate
τ−1 is proportional to (i) N, the number of flavors con-
tributing to the scattering; (ii) α2, which is essentially
the cross-section for scattering and (iii) T , which is the
single energy scale in the dc limit. Thus, τ−1 ∼ Nα2T ,
which gives (1), modulo logarithms. This provides an es-
timate of the frequencies over which transport is collision-
dominated and the preceding calculation is valid: in order
for collisions to produce relaxation, we require ω ≪ τ−1,
which occurs for ~ω/kBT ≪ Nα2.

Conductivity with impurities.- We turn now to the con-
ductivity of the noninteracting, disordered system. We
restrict to the case of scattering off random point impuri-
ties, characterized by vi(r) ∼ v20δ(r) and the locations of
which we shall assume are uncorrelated, 〈〈ρi(r)ρi(r

′)〉〉 ∝
δ(r − r′). With these assumptions, we are led to
HD in (2) with U(r) ≡

´

dr′vi(r − r
′)ρi(r

′). As be-
fore, we first compute the conductivity for a single
node. Assuming that the impurities are sufficiently di-
lute that the Born approximation is valid, the quasi-
particle lifetime due to impurity scattering from a sin-
gle node is given by 1

τ(ω) = −2ImΣret(ω,k) where

Σret
λ (ω,k) = niv

2
0

´

d3k′

(2π)3Fλλ′(k,k′)G
(0)
λ′ (ω,k

′) is the re-

tarded self-energy, G
(0)
λ (ω,k) = (ω + iδ− λvF k)

−1 is the
Green’s function for a noninteracting Weyl fermion with
helicity λ, and the form factor from the overlap of helicity
eigenspinors, Fλλ′(k,k′) = 1

2 (1 + λλ′ cos θkk′) to leading

order. We find [16] 1
τ(ω) ≡ 2πγg(ω), where g(ω) = ω2

2π2v3
F

is the density of states and γ = 1
2niv

2
0 characterizes the

strength of the impurity potential.

To evaluate the conductivity we use the Kubo formula,

σ(ω, T ) = −
1

ω
lim
q→0

ImΠret
xx (ω, |q|) (9)

where Πret
µν (ω, q) is the retarded response function which

for a system of linear dimension L is defined to be

Πret
µν (ω, q) = −

i

L3

ˆ ∞

0

dteiωt 〈[Jµ(−q, t), Jν(q, 0)]〉 ,(10)

with xµ = (t, r), pµ = (ω,p) and Jµ = (−ψ†ψ,J). From

gauge invariance Πret
µν (ω, q) = Πret(ω, |q|)

(

δµν −
qµqν
q2

)

,

so that (suppressing q = 0), σ(ω, T ) = − 1
ω ImΠret(ω) =
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Figure 1. Frequency-dependent conductivity of a single Weyl
node with disorder (constants defined in the text.)

− 1
3ω ImΠret

µµ(ω). Some algebra yields [16]

σ(ω, T ) =
4

3
e2v2F

ˆ

dǫ

2π

[fT (ǫ)− fT (ǫ + ω)]

ω
(11)

×
∑

λ,λ′

ˆ

d3k

(2π)3
ImGret

λ (ǫ+ ω, k)ImGret
λ′ (ǫ, k).

where fT (ω) = [eω/T + 1]−1 is the Fermi-Dirac func-
tion and we have used the retarded helicity-basis Green’s
function dressed with disorder lines, Gret

λ (ω,k) = [ω −
λvF k + i/2τ(ω)]−1. After a tedious calculation, we

may write σ(ω, T ) =
e2v2

F

hγ J (ω̂, T̂ ) where T̂ = T/ω0,

ω̂ = ω/ω0, so that fT (ω) = fT̂ (ω̂), ω0 = 2πv3F /γ is
a characteristic scale set by the disorder strength, and

J (ω̂, T̂ ) = 4
3

´

dǫ̂
2π

[fT̂ (ǫ̂)−f
T̂
(ǫ̂+ω̂)]

ω̂ I(ǫ̂+ ω̂, ǫ̂) with I a com-
plicated rational function [16].

In our model disorder can scatter between nodes, so
1/τ(ω) acquires a factor of N when N > 1; in common
with the interacting case, σ also has an overall prefactor
of N . From these it is easy to show that for N nodes,

σ(N)(ω, T ) =
e2v2F
hγ

J

(

N
ω

ω0
, N

T

ω0

)

, (12)

which is identical to the N = 1 result (Fig. 1) upon
rescaling ω0 → ω0/N .

While in general we integrate (12) numerically, in cer-
tain limits an analytic treatment is feasible. For ω ≪ T ,
fT̂ (ǫ̂)− fT̂ (ǫ̂ + ω̂) ≈ −ω̂f ′(ǫ̂). Expanding I in powers of
ω̂ and resumming only terms dominant as ǫ̂ → 0, we re-
cover the result of Burkov and Balents (Eq. (15) of [7]):
namely, a Drude-like response with a width vanishing as

NT 2, and a finite dc limit of
2e2v2

F

3hγ .
In the opposite limit, T → 0 at finite ω we may replace

the Fermi functions by step functions, which yields

σ(N)(ω) ≈ N
e2

12h

ω

vF

[

1−
16Nγω

15π2v3F
+O

(

N2ω2

ω2
0

)]

(13)

The leading term is universal and independent of disor-

der, and is simply σ
(N)
0 . Both regimes are captured in

0.00 0.02 0.04 0.06 0.08 0.10
0

5

10

15

0.

0.05

0.1

0.15

T�L

Ρ
dc
HW

cm
L

Α
T

Α0 = 0.5, vF = 2 x 105m�s

N = 24, L = 0.17eV ΑT

Ρdc HtheoreticalL
Ρdc HexperimentalL

Figure 2. ρdc = σ−1
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parameter values compared to experimental data from [12].

Fig. 1, which shows σ(ω, T ) for ω . ω0, beyond which
the Born approximation is insufficient.

Experiments.- In [12] the dc resistivity of polycrystalline
Y2Ir2O7 was found to vary with temperature as ρdcT ≈
130Ω · cm ·K over 10K . T . 170K, which is reminiscent
of our result with interactions (1). Accordingly, we com-
pare this data with a model of a clean WSM with N = 24
[5], as shown in Fig. 2. We find rather good agreement
with experimental data for physically reasonable param-
eter choices, shown inset. Very recently, transport in sin-
gle crystals of another pyrochlore iridate, Eu2Ir2O7, has
been studied [13] under pressure for 2K . T . 300K; at
low pressures∼ 2.06− 6.06GPa, ρdc(T ) resembles Fig. 2,
consistent with WSM behavior.

Conclusions.- The conductivity of WSMs thus exhibits a
rich variety of behavior on varying frequency and tem-
perature, in both the interacting clean and noninteract-
ing disordered limits, as shown in Figs. 1 and 2. In
particular, its nontrivial dependence on N is sensitive
to the strength of the interactions; with just disorder,
we find a striking difference between the ω ≪ T and
ω ≫ T regimes, with the T → 0 ac response dominated
by a universal, disorder-independent contribution. While
the limited existing dc conductivity data on the candi-
date iridates broadly agrees with our theory in the clean
limit, we caution that more dc and ac conductivity mea-
surements on single crystals with controlled disorder are
required to make a rigorous comparison. Theoretically,
the interplay of disorder and interactions, and corrections
to the isotropic node approximation still need to be con-
sidered. In particular, it would be striking if the distinct
behavior of the disordered system across the different fre-
quency regimes survives the inclusion of interactions. A
simultaneous treatment of disorder and interactions is,
as always, challenging and is left open for future work.
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