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We realize a two-dimensional kagomé lattice for ultracold atoms by overlaying two commensurate
triangular optical lattices generated by light at the wavelengths of 532 nm and 1064 nm. Stabi-
lizing and tuning the relative position of the two lattices, we explore different lattice geometries
including a kagomé, a one-dimensional stripe, and a decorated triangular lattice. We characterize
these geometries using Kapitza-Dirac diffraction and by analyzing the Bloch-state composition of a
superfluid released suddenly from the lattice. The Bloch-state analysis also allows us to determine
the ground-state distribution within the superlattice unit cell. The lattices implemented in this
work offer a near-ideal realization of a paradigmatic model of many-body quantum physics, which
can serve as a platform for future studies of geometric frustration.

PACS numbers:

Geometrically frustrated systems with a large degen-
eracy of low energy states are of central interest in
condensed-matter physics [1, 2]. The kagomé net – a pat-
tern of corner-sharing triangular plaquettes – presents a
particularly high degree of frustration. Such frustration
impacts the kagomé quantum antiferromagnet, for which
the ground state, proposed to be a quantum spin liquid
or valence bond solid [3–10], remains uncertain despite
decades of work. Resolving such uncertainty by experi-
ments on solid-state kagomé magnets [11, 12] is compli-
cated by the significant magnetic disorder or anisotropy
of such materials. For this reason, more faithful real-
izations of quantum many-body physics in the kagomé
lattice are needed.

Ultracold atoms trapped within optical lattices offer
clean realizations of exotic phases of matter in condensed-
matter physics [13]. Recently, non-primitive optical lat-
tices with multiple lattice sites per unit cell have been
realized in the honeycomb [14] and checkerboard [15] ge-
ometries, and double-well superlattices [16, 17], revealing
non-trivial ordering and dynamics arising from a low-
energy orbital degree of freedom [18]. The kagomé lattice
with ultracold atoms has attracted significant interest in
this context as well [19, 20], but it has not been experi-
mentally demonstrated to our knowledge.

In this Letter, we present the realization of the kagomé
geometry in a two-dimensional optical superlattice for ul-
tracold 87Rb atoms. The kagomé lattice is obtained by
eliminating every fourth site from a triangular lattice of
spacing a/2, with the eliminated sites forming a trian-
gular lattice of spacing a. The remaining sites generate
three connected s-orbital bands within a bandwidth on
the order of the intersite tunneling energy. Intriguingly,
the frustration besetting antiferromagnetic interactions
also implies that one of these bands be non-dispersing.
Such flat bands, distinguishing the kagomé configuration
from non-primitive lattices [14–17], accentuate the role of

interparticle interactions, leading possibly to crystalline
ordering [21] and supersolidity [22] for scalar bosons, and
ferromagnetism of itinerant fermions [23]. Furthermore,
geometric frustration of the kagomé lattice shows macro-
scopic degeneracy of lowest-energy classical states with
XY-type antiferromagnetic interactions in contrast to the
triangular lattice [24]. Our work therefore opens the door
to investigations of how geometric frustration affects both
orbital and magnetic properties of materials.

Our kagomé lattice is formed by overlaying short-
wavelength (SW) and long-wavelength (LW) triangular
lattices, formed with light at the commensurate wave-
lengths of 532 nm and 1064 nm, respectively [25]. In a
single-wavelength lattice, formed by three plane waves
of light of equal intensity I and wavevectors (and linear
polarizations) lying in a plane and intersecting at equal
angles, one obtains a triangular lattice of points with
zero intensity, and a honeycomb lattice of points with
maximum intensity 9

2
I separated by a triangular lattice

of intensity saddle points with intensity 4I. Our SW
lattice light is blue-detuned from the principal atomic
resonances of rubidium, so that atoms are attracted to
the triangular lattice of zero-intensity sites with a lattice
spacing of a/2 = (2/3)× 532 nm = 355 nm. The LW lat-
tice is red-detuned, so that its zero-intensity points are
potential-energy maxima for rubidium atoms. A unit cell
of the LW lattice contains four sites of the SW triangular
lattice, labeled A,B,C and D in Fig. 1. Aligning the po-
sitions of the LW potential maxima to coincide with sites
D lowers the potential energies VA,B,C at the other sites
by equal amounts ∆V = VD − VA,B,C = 8

9
VLW where

VLW is the maximum scalar potential depth of the LW
lattice ( we ignore the ∼ 1% vector shift in this lattice
[26] ). As ∆V is increased, atoms are excluded from sites
D, while the remaining sites form the kagomé optical lat-
tice. The kagomé geometry persists until VLW > 9VSW,
at which point atoms become preferentially confined in
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the LW honeycomb lattice.

Compared with previous proposals [19, 20], our sim-
pler approach to creating a kagomé lattice allows one to
tune the lattice geometry, thereby controlling its degree
of frustration. Aligning the LW potential maxima with
the SW lattice saddle points disfavors population in two
sites of the four-site unit cell (e.g. VB,C < VA,D) produc-
ing a one-dimensional (1D) stripe lattice (Fig. 1c or Fig.
3a). Aligning the LW potential maxima with the SW
potential maxima disfavors population in three sites of
the unit cell (e.g. VA,B,D > VC), producing a decorated
triangular lattice with lowest-energy sites forming a tri-
angular lattice while the remaining sites form a kagomé
lattice of local potential minima.

Experiments were conducted with scalar Bose-Einstein
condensates of ∼ 3 × 105 87Rb atoms produced at tem-
peratures of 80 nK in a red-detuned crossed optical
dipole trap with trap frequencies of (ωx, ωy, ωz) = 2π ×
(60, 30, 350)Hz, with ωz applying vertically. The large
∼ 100µm beam-waist diameters of the lattice beams en-
sured that the lattice potential modified the trapping fre-
quencies by less than 10%. Laser alignments and rela-
tive intensities were tuned to produce six-fold symmet-
ric diffraction patterns of condensates released from LW-
and SW-only lattices. The relative displacement of the
LW and SW lattices was measured using two two-color
Mach-Zehnder interferometers, one for beams 1 and 2
and the other for beams 1 and 3, and stabilized using
piezo-actuated mirrors in the optical paths [27]. A tilted
glass plate within each interferometer introduced a rel-
ative shift between the two lattice colors that, following
stabilization, was imparted onto the optical lattice.

We employed atom optics to characterize the lat-
tice as it is tuned between various geometries. These
atom-optical tools presented in this work may be use-
ful for the characterization of other superlattices and for
superlattice-based atom interferometry. The first of these
tools is Kapitza-Dirac diffraction [28, 29], for which the
lattice potential is suddenly pulsed during τ , after which
the condensate imaged after a time of flight. The suffi-
ciently short pulse imprints a phase −V (r)τ/~ propor-
tional to the lattice potential V (r) onto the condensate
wavefunction (which is initially nearly uniform).

The corresponding momentum-space distribution is
sensitive to the relative displacement of the LW and SW
lattices. To exhibit this sensitivity we blocked one of
the incident bi-chromatic lattice beams and examined
the resulting one-dimensional superlattice, with poten-
tial energy given as V (x) = VLW sin2(q(x + δx)/2) −
VSW sin2(qx) where 2π/q = 614 nm is the 1D LW lattice
spacing, and δx is the distance between the LW and SW
intensity minima. The atomic populations at wavevec-
tors ±q are given as

P±q ∝
∣

∣±iJLW

±1 J
SW

0 + JLW

∓1 J
SW

±1 e
∓i2qδx

∣

∣

2

(1)

where Jn is the nth-order Bessel function evaluated at
φLW,SW = VLW,SW τ/2~, and where we consider terms
up to second order in φLW,SW. The lack of inversion
symmetry of the lattice produced by an incommensurate
value of δx appears as a left/right momentum asymmetry
in the diffracted matter wave (Fig. 2).
A second method to characterize the optical superlat-

tice is the momentum-space analysis of a superfluid oc-
cupying the ground state of the lattice potential. Here,
the optical lattice potential depth was ramped up from
zero over 90 ms, held constant for 100 ms, and then sud-
denly switched off to allow for time-of-flight expansion
of the trapped gas. For the momentum-space analysis,
the maximum SW potential depth was kept constant at
VSW /h = 40kHz(= 8.8ER) where ER is the recoil energy
of the SW triangular lattice. We observed no significant
decay of the diffraction peak holding up to 150 ms in the
optical superlattices.
Varying the relative position of the two lattices we

identify the three high-symmetry lattice configurations
(Fig. 3a). Given that the scalar condensate occupies the
ground state of the lattice potential, its wavefunction can
be taken as real and positive; thus, its momentum dis-
tribution is symmetric under inversion. Expansion from
both the kagomé and the decorated triangular lattices
shows the three-fold rotational symmetry of the opti-
cal superlattice. In the 1D stripe geometry, one expects
equally weak occupation of two sites (e.g., A and D),
and equally strong occupation of the other two sites (B
and C) of the superlattice unit cell. Such a distribution
is (nearly) invariant under displacements of a/2 along
the A-D axis, and condensate diffraction along that axis
should reflect the shorter periodicity of the SW lattice.
The momentum distribution should also be symmetric
under reflection about the A-D axis. Both traits are ob-
served experimentally.
The Bloch-state momentum distributions allow one to

quantify the ground-state wavefunction within a unit
cell of the superlattice, which we express as ψ(r) =
∑

α ψαwα(r − sα) where wα(r) is the normalized Wan-
nier state wavefunction, sα the position and |ψα|

2 the
fractional atomic population of site α ∈ {A,B,C,D}
of the unit cell. At low VLW/VSW, we approximate
wα = w as cylindrically symmetric, Gaussian, and iden-
tical for all α. From the momentum-space populations
PGi

(i ∈ {1, 2, 3}) in the three first-order diffraction
peaks of the LW lattice [30]– corresponding to the in-
ner hexagon of peaks in time-of-flight images – and that
at zero wavevector P0, one determines the distinct quan-
tities

P̃i =
PGi

+ P−Gi

2P0

|w̃(0)|2

|w̃(Gi)|2
=

|ψβ + ψγ − ψδ − ψǫ|
2

|
∑

α ψα|
2

(2)
where w̃(0) and w̃(Gi) are now Fourier components of
the Wannier function, and β, γ, δ and ǫ label the four
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FIG. 1: Three bichromatic light beams intersecting at 120◦ form a kagomé optical lattice for ultracold 87Rb atoms, with the
two-dimensional potential V (r) shown in (a). Profiles of the potential of the SW, LW, and combined lattices are shown in (b).
Sites D of the SW lattice are emptied as ∆V exceeds the chemical potential, so that the remaining sites A, B and C form the
kagomé geometry. (c) Different lattice geometries are created for intermediate LW lattice depths (VLW < 9VSW) by displacing
the potential maxima of the SW lattice to the high-symmetry points X, Y or Z within the unit cell. For higher LW lattice
depths, a honeycomb geometry prevails.
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FIG. 2: Atom diffraction patterns, formed by τ = 8 µs pulse
of the lattice potential (with VSW/h ∼ 80kHz and VLW /h ∼

50kHz) followed by 26 ms time of flight, exhibit left/right
momentum asymmetry (defined as (P+q −P−q)/(P+q +P−q)
that varies with the displacement δx between the LW- and
SW-lattice intensity minima, in close agreement with the pre-
dicted behavior (solid line).

sites so that Gi ·(sβ−sγ) = 0. The Wannier state Fourier
components in Eq. 2 are determined from the second-
order diffraction populations as |w̃(0)|2/|w̃(Gi)|

2 =
(2P0/(P2Gi

+P−2Gi
))1/4. Together with the normaliza-

tion
∑

α |ψα|
2 = 1 these quantities determine the atomic

distribution in the unit cell [31].

We measured the population ratios P̃i as the superlat-
tice geometry was gradually tuned. Translating the rel-

ative position of the two lattices (Fig. 3b), one advances
from the kagomé geometry, with equal population in the
three ratios, to the 1D stripe geometry, with two identi-
cally small ratios, and then to another kagomé-geometry
lattice. Our data agree with a calculation of the single-
particle ground-state for the known lattice depths.

We focus finally on the kagomé-geometry lattice align-
ment, and examine the transition between the triangular
and kagomé geometries (Fig. 4). At zero VLW, the atoms
are confined in a SW triangular lattice, and the first-order
LW lattice diffraction orders are absent, indicating a unit-
cell population of (A,B,C,D) = (1/4, 1/4, 1/4, 1/4). As the
LW lattice depth is increased, the population ratios P̃i in-
crease and the kagomé geometry is achieved by gradually
expelling atoms from one site of the unit cell. The popu-
lation ratios tend toward a limiting value of 1/9 that is a
hallmark of diffraction from a kagomé lattice wherein the
atoms are distributed as (A,B,C,D) = (1/3, 1/3, 1/3, 0).

Here, the ground state of the kagomé lattice does not
suffer from frustration. In the future, effects of frustra-
tion may be explored by transferring bosons into the ex-
cited s-orbital flat band, or by changing the sign of the
hopping energy [32] so that the flat band becomes the
lowest in energy. The present choice of wavelengths also
yields kagomé lattices for the fermionic isotopes 6Li and
40K. Introducing fermions into the lattice at the appro-
priate fillings would place the Fermi energy within the flat
band, allowing for studies of flat-band ferromagnetism
due to repulsive interactions [23] or enhanced Cooper
pairing for attractive interactions [33]. Also, the demon-
strated tunability of the superlattice opens new possi-
bilities to emulate both ideal and deliberately distorted
kagomé lattices, potentially stabilizing the various can-
didate ground states of the kagomé quantum antiferro-
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FIG. 3: The real- and momentum-space composition of a su-
perfluid for various lattices. (a) The kagomé and decorated
triangular lattices maintain three-fold rotational symmetry in
configuration and momentum space, while the symmetry of
the 1D stripe lattice is reduced to a parity symmetry (left-
right in the images). For each setting, a schematic distin-
guishes between sites of high (green) and low (red) atomic
population. The expected momentum distribution for mea-
sured values of VSW/h = 40kHz and ∆V/h = 14kHz is shown
with the area of the black dot reflecting the fractional pop-
ulation. (b) Translating the LW-lattice potential maxima
(marked as a star in the schematic) along the A-D axis tunes
the lattice between kagomé and 1D stripe geometries, as re-
vealed by the population ratios P̃i identified according to the
inset. The data (averages of 4-5 measurements) agree with
calculations of the single-particle ground state (solid lines)
with the lattice depth used in the experiment. Interaction
effects are neglected since ∆V was higher than the chemical
potential µ ∼ h × 3.5 kHz of the condensate in the SW-only
lattice.
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FIG. 4: The superlattice was converted from a SW triangular
to a kagomé lattice by increasing VLW. As ∆V exceeds the
condensate chemical potential (µ/h ≃ 3.5 kHz), (a) the mo-
mentum population ratios reach the asymptotic value of 1/9
expected for a kagomé lattice, and (b) the D-site population
is extinguished. Data points represent averages of 7-10 mea-
surements. In (a), the dashed curve indicates the predicted

P̃i while the shaded region indicates the expected variation in
P̃i given a shot-to-shot instability of ∼20 nm in the relative
position of the LW and SW lattices.
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