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We follow the evolution of fermion pairing in the dimensional crossover from 3D to 2D as a
strongly interacting Fermi gas of °Li atoms becomes confined to a stack of two-dimensional layers
formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of
a gap in radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The measured
binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the
2D limit, the zero-temperature mean-field BEC-BCS theory.

Interacting fermions in coupled two-dimensional (2D)
layers present unique physical phenomena and are central
to the description of unconventional superconductivity
in high-transition-temperature cuprates [1] and layered
organic conductors [2]. Experiments on ultracold gases
of fermionic atoms have allowed access to the crossover
from Bose-Einstein condensation (BEC) of tightly-bound
fermion pairs to Bardeen-Cooper-Schrieffer (BCS) super-
fluidity of long-range Cooper pairs in three spatial di-
mensions [3, 4], and more recently, the confinement of
interacting Fermi gases to two spatial dimensions [5-9].
A fermionic superfluid loaded into a periodic potential
should form stacks of two-dimensional superfluids with
tunable interlayer coupling [10-13], an ideal model for
Josephson-coupled quasi-2D superconductors [1, 14]. For
deep potentials in the regime of uncoupled 2D layers, in-
creasing the temperature of the gas is expected to destroy
superfluidity through the Berezinskii-Kosterlitz-Thouless
mechanism [15-17], while more exotic multi-plane vortex
loop excitations are predicted for a 3D-anisotropic BCS
superfluid near the critical point [18].

In this work, we study fermion pairing across the
crossover from 3D to 2D in a periodic potential of in-
creasing depth. To form a bound state in 3D, the at-
traction between two particles in vacuum must exceed a
certain threshold. However, if the two particles interact
in the presence of a Fermi sea, the Cooper mechanism
allows pairing for arbitrarily weak interactions [19]. In
2D, even two particles in vacuum can bind for arbitrarily
weak interactions. Surprisingly, the mean-field theory of
the BEC-BCS crossover in 2D predicts that the binding
energy of fermion pairs in the many-body system is iden-
tical to the two-body binding energy E}, [20]. Indeed, to
break a pair and remove one pairing partner from the sys-
tem costs an energy [21] Ey mrp = v/p? + A% — p within
mean-field theory, where p is the chemical potential and
A is the pairing gap. In 2D, one finds [20] 4 = Er— E},/2
and A? = 2EpE,, where Ep is the Fermi energy, and
thus By, mr = Ey, i.e. the many-body and two-body
binding energies are predicted to be identical throughout
the BEC-BCS crossover.

We realize a system that is tunable from 3D to 2D with
a gas of ultracold fermionic Li atoms trapped in an opti-
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FIG. 1. (Color online) Evolution of fermion pairing in the 3D
to 2D crossover in a one-dimensional optical lattice, observed
via RF spectroscopy. Shown is the transferred atom number
versus RF offset frequency relative to the atomic hyperfine
splitting. a) Spectra at the Feshbach resonance at 690.7(1) G
with d/a = —0.01(4). Lattice depths from top to bottom in
units of Er: 1.84(3), 4.8(2), 6.1(2), 9.9(4), 12.2(4), 18.6(7),
and 19.5(7). b) Spectra on the BCS-side at 720.7(1) G, d/a =
—1.15(2). Lattice depths in units of Er: 2.75(5), 4.13(7),
4.8(1), 6.0(2), 10.3(2) 18.1(4).

cal trap and a standing-wave optical lattice. The lattice
produces a periodic potential along the z direction,

V(z) = Vpsin*(nz/d), (1)

with depth V4 and lattice spacing d = 532 nm. Together
with the optical trap, the lattice interpolates between
the 3D and 2D limits. It gradually freezes out motion
along one dimension and confines particles in increas-
ingly uncoupled layers. Features characteristic of the 2D
system appear as the strength of the periodic potential



is increased. The threshold for pairing is reduced, allow-
ing pairs to form for weaker attractive interactions than
in the 3D system. The effective mass of particles in-
creases along the confined direction, and center-of-mass
and relative degrees of freedom of an atom pair become
coupled [11]. For a deep potential that suppresses in-
terlayer tunneling, the system is an array of uncoupled
two-dimensional layers. Here, center of mass and relative
motion decouple and fermion pairs form for the weakest
interatomic attraction [11, 22, 23].

In the experiment, the appearance of bound fermion
pairs is revealed using radio-frequency (RF) spec-
troscopy. The atomic gas consists of an equal mixture of
OLi atoms in the first and third hyperfine states (denoted
[1) and |3)), chosen to minimize final state interaction ef-
fects in the RF spectra [24]. Interactions between atoms
in state |1) and |3) are greatly enhanced by a broad Fesh-
bach resonance at 690.4(5) G [25]. An RF pulse is applied
to transfer atoms from one of the initial hyperfine states
to the unoccupied second hyperfine state (denoted |2)).
In previous work on RF spectroscopy of 4°K fermions in
a deep 1D lattice [8], an RF pulse transferred atoms from
an initially weakly interacting state into a strongly inter-
acting spin state, likely producing polarons [26]. In our
work the initial state is the strongly interacting, largely
paired Fermi gas in equilibrium, and the final state is
weakly interacting.

An asymmetric dissociation peak (the bound to free
transition) in the RF spectrum indicates the presence of
fermion pairs. For two-particle binding, the pair dissoci-
ation lineshape in the 3D and 2D limits is proportional to
p(hv — Ey,)/v?, with p the free-particle density of states,
and v = £(vyt — vue) the offset of the RF frequency ¢
from the hyperfine splitting vu¢ (plus symbol: [1) — |2)
transition, minus symbol: |3) — |2) transition). This
form can be obtained from Fermi’s Golden Rule and the
bound state wavefunction in momentum space; see also
Refs. [21, 27]. In 2D, the expected dissociation lineshape
is then proportional to

o(hV — Eb)

I(v) x 2

: (2)

In addition to the pairing peak, at finite temperature
one expects a peak in the RF spectrum due to unbound
atoms, the free to free transition. A narrow bound to
bound transition can also be driven at an offset frequency
v, = (Eh — EJ)/h that transfers one spin state of the
initial bound pair with binding energy Ej, into a bound
state of |2) with |1) or |3), of binding energy E}. For a |1)-
|3) mixture near the Feshbach resonance, Ey, < E| [24],
so the bound to bound peak is well separated from the
bound to free and free to free peaks. As very recently
calculated [28], final state interactions and the anomalous

nature of scattering in 2D introduce an additional factor

of In®(By/Ey)
2 ((hv—Ey)/EL)
of the sharp peak expected from the step-function.

= into Eq. 2, causing a rounding off

In a 1D lattice, the binding energy for two-body pairs is
determined by the lattice spacing d, the depth Vj, and the
3D scattering length a. In the 2D limit Vy > Eg, with
recoil energy Fr = %, the scattering properties of the
gas are completely determined by F, [22, 23]. In that
limit, the lattice wells can be approximated as harmonic
traps with level spacing hw, = 21/Vy Er and harmonic os-

cillator length [, = / mi In a many-particle system in

wy ”

2D, the ratio of the binding energy to the Fermi energy

determines the strength of interactions. The 2D scat-
tering amplitude f(Er) = m for collisions

with energy Ep is parameterized by In(kpasp), where
kr =+2mEp/h and asp = h//mEy. Tt is large when
In(krpasp)| <1 [22, 23], corresponding to the strong-
coupling regime [28, 29]. The BEC side of the BEC-BCS
crossover corresponds to negative values of In(kpasp),
while the BCS side corresponds to positive values [20].

The experimental sequence proceeds as follows. An
ultracold gas of SLi is produced by sympathetic cooling
with 23Na as described previously [21]. The SLi atoms
are transferred from a magnetic trap to an optical dipole
trap (wavelength 1064 nm, waist 120 pum), with axial
harmonic confinement (frequency 22.8 Hz) provided by
magnetic field curvature. With 6Li polarized in state
[1), the magnetic bias field is raised to 568 G, and an
equal mixture of hyperfine states |1) and |3) is created
using a 50% RF transfer from |1) to |2) followed by a full
transfer from |2) to |3). The field is then raised to the
final value and evaporative cooling is applied by lower-
ing the depth of the optical dipole trap, resulting in a
fermion pair condensate with typically 5 x 10° atoms per
spin state. The lattice is then ramped up over 100 ms.
The retro-reflected lattice beam (wavelength 1064 nm) is
at an angle of 0.5 degrees from the optical dipole trap
beam, enough to selectively reflect only the lattice beam.
The depth of the lattice is calibrated using Kapitza-Dirac
diffraction of a 2Na BEC and a °Li, molecular BEC,
and by lattice modulation spectroscopy on the ®Li cloud.
The magnetic field and hyperfine splitting are calibrated
using RF spectroscopy on spin polarized clouds. After
loading the lattice, the RF pulse is applied for a dura-
tion of typically 1 ms. Images of state |2) and either |1)
or |3) are recorded in each run of the experiment.

To ensure loading into the first Bloch band, the Fermi
energy and temperature of the cloud are kept below the
second band. The 2D Fermi energy E3° = %, with n
the 2D density per spin state, is typically h-10 kHz. The
bottom of the second band is at least one recoil energy
Er = h-29.3 kHz above the bottom of the first band
in shallow lattices, and up to about A - 300 kHz for the
deepest lattices. The temperature is estimated to be on
the order of the Fermi energy.

RF spectra are recorded for various lattice depths and
interaction strengths. Figure 1 shows examples of spec-
tra over a range of lattice depths at the 3D Feshbach



Vo/Eg

FIG. 2. (Color online) Binding energy Ey, versus lattice depth
Vo at several values of the 3D scattering length a. FE} is
normalized via the lattice frequency w,. Red circles: results
from spectra at 690.7(1) G and d/a = —0.01(4). Green tri-
angles: 720.7(1) G, d/a = —1.15(2). Blue squares: 800.1(1)
G, d/a = —2.69(1). Curves show predictions from Orso et
al. [11]. Black dashed line: harmonic approximation result
for 1/a = 0.

resonance and on the BCS-side of the resonance at 721
G, where fermion pairing in 3D is a purely many-body
effect. At the lowest lattice depths, the spectra show
only a single peak, shifted to positive offset frequencies
due to many-body interactions. This is similar to the
case without a lattice [24, 30]; to discern a peak due to
fermion pairs from a peak due to unbound atoms would
require locally-resolved RF spectroscopy of imbalanced
Fermi gases [30]. However, as the lattice depth is raised,
the single peak splits into two and a clear pairing gap
emerges. The narrow peak at zero offset is the free to
free transition, and the asymmetric peak at positive off-
set is the pair dissociation spectrum. The pair spectrum,
especially on resonance, shows a sharp threshold, and a
long tail corresponding to dissociation of fermion pairs
into free atoms with non-zero kinetic energy.

Binding energies are determined from the offset fre-
quency of the pairing threshold. Although the lineshape
in Eq. (2) jumps discontinuously from zero to its max-
imum value, the spectra are observed to be broadened.
This is to a large part due to the logarithmic correc-
tions [28] noted above, that predict a gradual rise at the
threshold hv = E},, and a spectral peak that is slightly
shifted from Ey. We include possible additional broad-
ening by convolving the theoretical lineshape, including
the logarithmic correction, with a gaussian function of
width w,,. The parameters F}, and w,, are determined
by a least-squares fit to the measured spectrum. Typical
spectra have w,, of 5 kHz, consistent with our estimates
of broadening based on collisions and three-body losses.
The Fourier broadening is 1 kHz. Power broadening is
about 5 kHz on the free to free transition, and less than
1 kHz on the bound to free transition due to the re-
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FIG. 3. (Color online) a) Binding energy of fermion pairs

versus interaction strength [./a for deep lattices (Vo >
17ER). Solid curve: theoretical prediction in the 2D harmonic
limit [22, 23]. b) Ratio of the measured binding energy to the
two-body result [11] versus In(krazp) for Vo > 17ER. Black
diamonds: binding energy determined from the bound to
bound transition with resonant final state interactions. Other
data symbols: see Fig. 2. Horizontal line: zero-temperature
mean-field theory [20].

duced wavefunction overlap. Inclusion of the logarithmic
correction is found to be necessary in order for the fit
function to reproduce the observed behavior of the high
frequency tail. The final state binding energy used in the
logarithmic correction for fitting is obtained from spectra
where both a bound to bound and a bound to free peak
were measured. At low lattice depths, the 2D form for
the paired spectrum should differ from the exact shape
that interpolates between the 3D and 2D limits. In the
case where the shape of the spectrum is given by the 3D
limit, fitting to the 2D form overestimates the binding
energy by 8%.

Figure 2 shows the measured binding energies as func-
tion of Vy/ Eg for several interaction strengths. The bind-
ing energies are normalized by hw, = 2v/VyEg, which
equals the level spacing in the harmonic approximation
to the lattice potential. The measured binding ener-
gies grow with increasing lattice depth, and agree rea-
sonably well with theoretical predictions for two-body
bound pairs in a 1D lattice [11]. The binding energy at
the 3D resonance approaches a constant multiple of Aw,
as the lattice depth increases, as expected from the 2D
limit [22, 23]. Figure 3(a) compares the binding energies
measured in lattices deeper than 17Eg to predictions in
the harmonic quasi-2D limit [22, 23]. At the 3D Feshbach
resonance, we find Ey, = 0.232(16)Aw, for deep lattices.
The error bar refers to the standard error on the mean.
This value is close to the harmonic confinement result of



0.244hw, [23]. The exact calculation [11] predicts a con-
stant downward shift of the binding energy by 0.2Eg for
deep lattices due to the anharmonicity of the sinusoidal
potential. For Vj of about 20Fg, this gives a prediction
of 0.22hw., also close to the measured value.

Figure 3(b) shows the binding energy measured in
deep lattices normalized by the exact two-body re-
sult [11] versus the many-body interaction parameter
In(kpagp). Overall, the binding energies are close to the
two-body value, even in the strong coupling regime for
In(kpasp)| < 1, as predicted by zero-temperature mean-
field theory [20]. The data show a slight downward devi-
ation for the strongest coupling. At fixed reduced tem-
perature T'/Tr, the relationship should be universal. It
will thus be interesting to see in future work whether the
binding energy depends significantly on temperature.

The bound to bound transition is seen in Fig. 4 as a
narrow peak at negative offset frequencies. In the regime
where F}, can be found from the pair dissociation spec-
trum, the bound to bound peak position directly yields
the binding energy in the final state E{. For example, the
spectrum in Fig. 4(a), taken at the 3D |1)-|3) resonance at
690.7(1) G and Vo /Er = 9.59(7), gives Ef /Er = 18.0(1)
at a final state interaction of d/a’ = 8.41(2). Like-
wise, the spectrum in Fig. 4(b) at Vo/Er = 26.1(4) and
a magnetic field of 751.1(1) G, where d/a’ = 2.55(1),
gives E} /Er = 5.3(1). An independent measurement for
d/a = 2.55(2) using the bound to free spectrum at 653.55
G yields Fy,/Er = 5.25(2), showing that bound to bound
transitions correctly indicate binding energies.

The BCS side of the 2D BEC-BCS crossover is reached
in Fig. 4(c) by increasing the number of atoms to increase
Er, and increasing the magnetic field to reach a lower
binding energy. In Fig. 4(c) the central Fermi energy is
h-43(6) kHz and T/Tr = 0.5(2). The magnetic field is
set to 834.4(1) G, where d/a = —3.06(1), and the final
state interactions between |1) and |2) are resonant, with
d/a’ = —0.01(3). The lattice depth is Vo/Er = 26.4(3).
Thus we know E{ = 0.232(16)fw, = 2.4(2)ERr at this
lattice depth. From the bound to bound transition in
Fig. 4(c) we can then directly determine the binding
energy of |1)-|3) fermion pairs to be En/Er = 0.9(2).
The theoretical prediction [11] for two-body binding gives
Ey/Egr = 0.82(1). The measured binding energy gives a
many-body interaction parameter of In(krasp) = 0.6(1),
on the BCS side but within the strongly interacting
regime where one expects many-body effects beyond
mean-field BEC-BCS theory [26, 29]. It is therefore in-
teresting that the measured binding energy is close to the
expected two-body binding energy to much better than
the Fermi energy, as predicted by mean-field theory [20].

In conclusion, we have measured the binding energy
of fermion pairs along the crossover from 3D to 2D in a
one-dimensional optical lattice. Measurements were per-
formed at several lattice depths and scattering lengths,
allowing quantitative comparison with theoretical predic-
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FIG. 4. (Color online) Spectra including the bound to bound
transition, a narrow peak at negative RF offset. Shown are
spectra at magnetic fields of a) 690.7(1) G, b) 751.1(1) G and
c) 834.4(1). The interaction parameters d/a are a) -0.01(4),
b) -1.91(1), and c¢) -3.06(1). Lattice depths in units of Er
are a) 9.59(7), b) 26.1(4), and c) 26.4(3). The bound to free
transition is not visible in (c¢). The transfer is from |1) to |2)
in (a) and (b) and from |3) to |2) in (c).

tions. Considering the fact that the gas is a strongly in-
teracting many-body system, the close agreement with
two-body theory is surprising, especially in the strong-
coupling regime. While mean-field BEC-BCS theory in
2D predicts this behavior [20], it misses other important
features of the many-body system, most strikingly the
interaction between fermion pairs [13]. Superfluidity in a
one-dimensional lattice will be an exciting topic for future
studies. Stacks of weakly coupled, superfluid 2D layers
would constitute a basic model of the geometry found in
high-temperature superconductors.
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