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The thermal friction force acting on an atom moving relative to a thermal photon bath is known to
be proportional to an integral over the imaginary part of the frequency-dependent atomic (dipole)
polarizability. Using a numerical approach, we find that blackbody friction on atoms either in
dilute environments or in hot ovens is larger than previously thought by orders of magnitude. This
enhancement is due to far off-resonant driving of transitions by low-frequency thermal radiation.
At typical temperatures, the blackbody radiation maximum lies far below the atomic transition
wavelengths. Surprisingly, due to the finite lifetime of atomic levels, which gives rise to Lorentzian
line profiles, far off-resonant excitation leads to the dominant contribution to the blackbody friction.

PACS numbers: 68.35.Af, 12.20.Ds, 95.30.Dr, 95.30.Jx

Introduction.—In Ref. [1], the thermal drag force on an
atom moving through a thermal bath at velocity v has
been calculated on the basis of the fluctuation-dissipation
theorem. In a nutshell, the fluctuation-dissipation the-
orem states that any thermal fluctuation of a physical
quantity (say, the electric field at finite temperature) is
accompanied by corresponding fluctuations in the con-
jugate variable (here, the atomic dipole moment) pro-
vided the susceptibility (in the current case, the atomic
polarizability) has a nonvanishing imaginary part. The
imaginary part describes a dissipative process, in which
the atom absorbs, then spontaneously emits, electromag-
netic radiation. The dissipative fluctuations give rise to
a drag force calculated using the Green–Kubo formula,
as thoroughly explained in Ref. [1]. Further physical in-
sight can be gained if one understands the process in
terms of the direction-dependent Doppler effect [2]. The
atom absorbs blue-shifted blackbody photons coming in
from the front, while emitting these photons in all direc-
tions, thereby losing kinetic energy due to net drain on
its energy, and, as a consequence, on its momentum [3].

Here, we show that even more intriguing problems arise
when one tries to evaluate the effect numerically, for sim-
ple atoms. In atomic physics, the width Γn for each indi-
vidual energy level n needs to be determined separately.
Atomic transitions can be driven even very far from res-
onance, albeit with small transition probabilities, The
blackbody spectrum is distributed over the entire fre-
quency interval ω ∈ [0,∞), which leads to significant
non-resonant contributions to the thermal friction.

The authors of Ref. [1] use correlation functions for the
thermal electromagnetic fluctuations [4, 5], in order to
calculate the friction force acting on neutral, polarizable
objects moving through uniform and isotropic thermal
radiation. According to Eq. (12) of Ref. [1], the effective
friction (EF) force, which acts in a direction opposite to
the velocity v, is given as a spectral integral,

FEF = − β~2 v

3π c5 (4πε0)

∫ ∞
0

dω
ω5 Imα(ω)

sinh2( 1
2β~ω)

, (1)

where β = 1/(kBT ) is the Boltzmann factor and α(ω) is
the dynamic polarizability of the atom. We here argue
that the inclusion of the resonance widths due to the
finite lifetimes of atomic levels is crucial in the calculation
of the friction force. SI mksA units are used throughout
this work.

Narrow and finite width.— If we assume that all atomic
transitions are infinitely narrow (of width ε), then

α(ω) =
∑
n

f0n

2ω0n
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+

1

ω0n + ω − iε

)
, (2)

where f0n denotes the oscillator strength of the transition
and ω0n is the angular frequency for the transition from
the ground state |0〉 to the excited state |n〉. In view of
the Dirac prescription 1/(x− iε) = P (1/x) + iπδ(x), the
imaginary part of the polarizability is approximated as a
sum of Dirac δ peaks,

Imα(ω) =
∑
n

πf0n

2ω0n
δ(ω − ω0n) . (3)

However, if one includes the width Γn of the excited
states, then the starting expression (see Chap. 8 of
Ref. [6]) for the dynamic polarizability reads
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Here, the decay width Γn(ω) may be a function of the
driving frequency ω. In a number of places in the lit-
erature [e.g., see the text after Eq. (2) of Ref. [7]], it is
assumed that

Γn(ω) = Γn(ω) =
ω

ω0n
Γn , Γn ≡ Γn(ω0n) . (5)

One can justify the ansatz (5) in two ways (i) and(ii).
(i) One may invoke an analogy with a damped, driven



2

harmonic oscillator, whose Green function g(t−t′) fulfills
the defining differential equation(

− ∂2

∂t2
+ γ

∂

∂t
+ ω2

0

)
g(t− t′) = δ(t− t) , (6)

so that the Fourier transform of the Green function reads
as g(ω) = 1/(ω2

0 − ω2 − i γ ω), with

Im g(ω) =
γ ω

(ω2 − ω2
0)

2
+ γ2 ω2

. (7)

Assuming that Γn(ω) = Γn(ω), this is proportional to
the expression in (4) under the obvious identification
ω0 → ω0n, γ → Γn. (ii) The decay width Γn enters
the propagator denominators in Eq. (4) by a summation
of self-energy insertions [8]. The imaginary of the self-
energy, divided by ~, equals the decay width [9]. The
velocity-gauge expression [8, 10, 11] for the decay rate,
at resonance ω = ωn and off resonance (for general ω),
reads as

Γn =
4α

3π
ω0n
|〈Ψ0| ~p |Ψn〉|2

(mc)2
, (8a)

Γn(ω) =
4α

3π
ω
|〈Ψ0| ~p |Ψn〉|2

(mc)2
=

ω

ω0n
Γn , (8b)

where ~p is the momentum operator, and Ψ0 and Ψn are
the wave functions of the ground and excited state.

By contrast, the so-called length gauge expression [8,
10, 11] for the decay width off resonance reads as

Γn =
4α

3π
ω3

0n

|〈Ψ0|~x|Ψn〉|2

c2
, (9a)
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3π
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Γn . (9b)

For atoms, using the commutator relation ~p =
im[H,~x]/~, where H is the Hamiltonian and m the elec-
tron mass, one can show the equivalence of Eqs. (8a)
and (9a) at resonance. The ω3 dependence off reso-
nance in length gauge can be justified by analogy with
Abraham–Lorentz radiative damping, with a damped os-
cillator Green function(
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∂3

∂t3
+ ω2

0

)
g̃(t− t′) = δ(t− t) ,

Im g̃(ω) =
γ ω3 ω2

0

ω4
0 (ω2 − ω2

0)
2

+ γ2 ω6
.

(10)

Inserting the expression Γn(ω) = Γ̃n(ω) into Eq. (4), one
obtains the length-gauge form for the imaginary part of
the polarizability off resonance (ω0 → ω0n, γ → Γn).

Quite surprisingly, the question of whether one should
use the length or velocity forms for the decay width off
resonance, i.e., in the interval 0 < ω < ω0n, has not
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FIG. 1. Plot of the integrand x5 e−b x Ls(x) defined in
Eq. (11b) in the interval characteristic of the thermal peak
x ≈ 5/b = 0.01583 [Fig. (a), parameter s = 1] and near the
resonant peak x ≈ 0.375 [Fig. (b), indistinguishable curves
for s = 1 and s = 3]. The thermal peak [Fig. (a)] yields
the dominant contribution to the model integral J defined in
Eq. (11a).

been answered conclusively in the literature. It has of-
ten been stressed (e.g., in Ref. [12]) that the electric field

strength ~E is a physical observable and thus gauge in-
variant while the gauge-dependent vector potential ~A is
not. Lamb noted in footnote 88 on p. 268 of Ref. [13] that
the interpretation of the quantum mechanical wave func-
tion is only preserved in the length gauge with the dipole
~r · ~E interaction, because the kinetic momentum changes
from ~p → ~p − e ~A in the presence of a vector potential,
and therefore the ~p operator in the quantum mechanical
Hamiltonian of the atom cannot be interpreted any more
as a kinetic momentum if the vector potential is nonvan-
ishing (see also Chap. XXI of Ref. [14] and Refs. [15, 16]).
On the other hand, in Ref. [7], the authors explain in the
text after Eq. (2) that “the velocity [gauge] form follows
originally from the [fully relativistic] QED description”
and should therefore be used off resonance, for the ob-
vious reason that the nonrelativistic limit of the Dirac
matrix vector ~α, which enters the relativistic expression
for the self-energy [17] is the momentum operator ~p/(mc).
While the length-gauge results seem to be generally pre-
ferred in the literature, the use of the length versus veloc-
ity forms remains controversial, and all numerical results
below are therefore indicated for both velocity and length
gauge; further considerations on the choice of the gauge
are beyond the scope of the current article.

Model example.—In order to illustrate the numerical
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evaluation of Eq. (1), we consider a dimensionless model
integral which is obtained by replacing frequency, transi-
tion width and β with their dimensionless equivalents:

ω → x = ~ω/Eh, Γ→ γ = ~Γ/Eh,

ω0 → x0 = ~ω0/Eh, β → b = β Eh = Eh/(kBT ),

where Eh is the Hartree energy. The resulting integral

J =

∫ ∞
0

dxx5 e−b x Ls(x) , (11a)

Ls(x) = Im
[
1/
(
x0 − x− iγ

2

(
x
x0

)s)]
, (11b)

contains the “Boltzmann factor” e−b x which models the
hyperbolic sine in the denominator of the integrand of
Eq. (1), and the imaginary part is taken for a single res-
onance function that models the Lorentzian line profile
[with s = 1 and s = 3 for the analogues of Eq. (8b)
and Eq. (9b) respectively]. We choose the temperature
as T = 1000K, corresponding to b = 315.775, and res-
onance parameters for the lowest (1S–2P) transition in
the hydrogen atom: x0 = 3

8 , and γ = 1.5162×10−8. The
imaginary part of the Lorentzian “polarizability term”
Ls(x) is highly peaked near the resonance energy x = x0

and for s = 0, and the full width at half maximum
(FHWM) is equal to γ. The relative change of the prefac-
tor x5 exp(−b x) over the interval x ∈ (x0− 1

2 γ, x0 + 1
2 γ)

is smaller than 10−5. One thus conjectures that the re-
placement Ls(x) → π δ(x − x0) should provide for an
excellent numerical approximation to the contribution of
the Lorentzian peak to the integral J . Indeed,

P1 =

0.375001∫
0.374999

dxx5

eb x
Ls(x) =

{
8.669× 10−54 (s = 1)
8.669× 10−54 (s = 3)

,

P2 =

0.375001∫
0.374999

dxx5

eb x
π δ(x− x0) = 8.711× 10−54 , (12)

confirming that P1 ≈ P2 for the peak term. However,
this treatment ignores the possibility of far off-resonant
driving of the transition for x� x0. A numerical evalua-
tion of the infrared thermal spectrum leads to the result

Qs =

0.374999∫
0

dxx5

eb x
Ls(x) =

{
3.741× 10−22 (s = 1)
1.550× 10−24 (s = 3)

,

(13)
which is larger than (12) by roughly 30 orders of magni-
tude. The exact numerical result for J fulfills Js ≈ Qs to
six decimals for s = 1 and s = 3; the effect is dominated
by off-resonance absorption (see also Fig. 1).

Simple Atoms.—Returning from our model exam-
ple (11a) to realistic simple atoms, we provide results
for the numerical integration of Eq. (1) for hydrogen
atoms in Fig. 2 and for helium atoms in their ground and
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FIG. 2. The characteristic slowdown time due to friction
for ground state atomic hydrogen as a function of the black-
body radiation temperature. The solid line shows the results
using the dynamic polarizability of Eq. (4) in length-gauge
form [Eq. (9b)], the long-dashed line is the velocity-gauge
form (8b), the shaded area is in between, and the short-dashed
line results from Dirac δ peaks given in Eq. (3).
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FIG. 3. Same as Fig. 2 for a ground state helium atom.

100 200 500 1000 2000 500010-5

0.01

10

104

107

1010

1013

T @KD

Τ
@y

ea
rs

D

FIG. 4. Same as Figs. 2 and 3 for metastable helium (23S1).

metastable triplet states in Figs. 3 and 4, respectively.
The friction force is expressed in terms of its correspond-
ing characteristic slowdown time τ = mv/F . For atomic
hydrogen and helium, the dynamic polarizability (4) has
been used with the parameters listed in Tables I—III.
The input data have been partially calculated by us, and
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TABLE I. Frequencies, oscillator strengths, lifetimes, and
level widths for transitions between the ground 1S state and
n1P levels within the hydrogen atom.

n ω0n [a.u.] f0n [a.u.] 1/Γn [ns] Γn [a.u.]
2 0.375 000 000 0.416 196 717 1.595 1.5162 10−8

3 0.444 444 444 0.079 101 562 5.268 4.5911 10−9

4 0.468 750 000 0.028 991 029 12.346 1.9507 10−9

5 0.480 000 000 0.013 938 344 23.949 1.0078 10−9

TABLE II. Same as Table I for transitions between the ground
11S state and the singlet n1P levels within the helium atom.

n ω0n [a.u.] f0n [a.u.] 1/Γn [ns] Γn [a.u.]
2 0.779 881 291 0.276 1647 0.555 4.3514 10−8

3 0.848 578 015 0.073 4349 1.728 1.3998 10−8

4 0.872 654 727 0.029 8629 3.975 6.0852 10−9

5 0.883 818 387 0.015 0393 7.653 3.1607 10−9

TABLE III. Same as Table II for transitions from the triplet
metastable 23S state to triplet n3P levels (helium atom).

n ω0n [a.u.] f0n [a.u.] 1/Γn [ns] Γn [a.u.]
2 0.042 065 187 0.539 0861 98.202 2.4623 10−10

3 0.117 148 294 0.064 4612 98.154 2.4635 10−10

4 0.142 905 024 0.025 7689 142.886 1.6923 10−10

5 0.154 678 191 0.012 4906 225.643 1.0716 10−10

the transition frequencies and oscillator strengths have
been verified against those given in Refs. [18, 19]. The
total decay rates used in the calculation include the de-
cays to both 1S and 1D states. The temperature at which
the full Lorentz profile results start to deviate from the
Dirac-δ peaks is given by T ∗ = ~ω02

kBx
where x is the greater

of the two real and positive (rather than complex) solu-
tions of the equation x7e−x = 32

21π
5 Γ2

ω02
(velocity gauge)

and x9e−x = 128
15 π

7 Γ2

ω02
(length gauge, n = 2 is the princi-

pal quantum number of the lowest excited state). For an
equation of the form xn e−x = A, this particular solution
can be expressed as x = −nW−1(−A1/n/n), where W
is the generalized Lambert W function [20]. In velocity
gauge, T ∗ evaluates to 3293 K for hydrogen, 6927 K for
singlet and 346K for triplet helium. In length gauge we
have T ∗ = 2954 K for hydrogen, 6208 K for singlet and
312 K for triplet helium (confirmed in Figs. 3 and 4).

Conclusions.—In this Letter, we show that far off-
resonant driving of atomic transitions yields the domi-
nant contribution to the blackbody friction force on mov-
ing atoms, due to the overlap of the infrared tail of the
Lorentzian profile with the infrared thermal peak of the
blackbody radiation. It is thus imperative to take the
finite lifetime of the atomic resonances and their corre-

sponding width into account. Numerical results for sim-
ple atoms are provided in Figs. 2—4. The feasibility of an
experimental verification of the predictions of this Letter
remains to be studied. Of the atomic systems considered
here, the largest effect is expected for the metastable 3S1

state in helium. In this case and for a temperature equal
to the melting point of tungsten (3695K) the character-
istic slowdown time is computed to be 3016s (≈ 50 min-
utes), which makes the friction effect difficult to observe
in laboratory experiments, but perhaps not impossible.
The general importance of an accurate understanding of
blackbody friction for astrophysical processes has already
been stressed in Ref. [1]. Further remarks on conceivable
astrophysical consequences of the calculations reported
here are beyond the scope of this Letter.
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