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Abstract

Non-dispersive localized Trojan wave packets with ni ∼ 305 moving in near-circular Bohr-like

orbits are created and transported to localized near-circular Trojan states of higher n, nf ∼ 600,

by driving with a linearly polarized sinusoidal electric field whose period is slowly increased. The

protocol is remarkably efficient with over 80% of the initial atoms being transferred to the higher

n states, a result confirmed by classical trajectory Monte Carlo simulations.
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In quantum mechanics, all objects exhibit both particle- and wave-like behaviors. One

avenue for exploring this duality is analyzing the dynamics of wave packets, i.e., localized

non-stationary wave functions, whose average motion mimics that of the corresponding

classical particles. Indeed Schrödinger suggested [1] that a localized coherent superposition of

harmonic oscillator eigenstates [2] could be constructed that, due to the equispaced harmonic

energy spectrum, would evolve without dispersion following the equations of motion for a

classical particle. He also discussed the creation of coherent nondispersive electronic wave

packets in atoms. However, in atoms, the energy levels are not equispaced, leading to

dispersion and only transient localization [3, 4]. Nonetheless, theory suggests that such

dispersion can be suppressed with the aid of external fields [5–7]. The most intensively

studied nondispersive states are termed Trojan wave packets [5, 8] because the mechanism

responsible for suppressing dispersion (of classical origin [9]) parallels that for formation of

Jupiter’s Trojan asteroids [8]. In the atomic physics analogue a localized Rydberg electron

evolving along a circular (“planetary”) orbit is stabilized by applying a circularly polarized

microwave field synchronized with the orbital motion. Generation of such Trojan states has

remained elusive. Recently, an attempt was made to create Trojan wave packets in Rydberg

states (n ∼ 70) from a low angular momentum (ℓ = 1) state by adiabatically transforming

a microwave driving field from elliptical to circular polarization [10]. However, the degree

to which the ellipticity of the wave packet synchronously follows that of the microwave field

remains an open question [11, 12] as the circularly polarized field stabilizes not only circular

wave packets but also non-Trojan low-ℓ states.

Here we pursue an alternative strategy for creating Trojan wave packets that utilizes

linearly polarized fields [13]. The starting point is the generation of localized Rydberg

wave packets moving in very-high-n (∼ 305) near-circular orbits [4]. The Kepler periods for

such states are large, Tn ≃ 4ns (= 2πn3) (atomic units are used throughout), allowing their

control using fast commercial pulse and arbitrary waveform generators. For example, uni-

directional half-cycle pulses with duration Tp≪Tn can be produced. A scheme was recently

demonstrated using a train of half-cycle pulses to maintain the localization of a near-circular

wave packet over hundreds of orbits [14]. However, use of a unidirectional half-cycle pulse

train, with its net dc field component, leads to a slow increase in the ellipticity of the orbit.

Here we show that far superior stabilization can be achieved by driving with a linearly polar-

ized sinusoidal field (which has no dc component) whose frequency is resonant with the wave
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packet and whose phase is synchronized with its orbital phase. This permits the simple and

unambiguous realization of Trojan wave packets. Furthermore, we demonstrate that these

Trojan wave packets are remarkably robust and can be adiabatically transported [15–17] to

much higher n ∼ 600, while preserving their circularity and localization, by chirping the

frequency of the drive field. Creation of such states moves measurements a step closer to

the macroscopic limit facilitating studies of classical-quantum correspondence [18].

The circular wave packets employed here are prepared, as described elsewhere [4], by

first creating a mix of quasi-one-dimensional (quasi-1D) potassium Rydberg atoms with

ni = 304 and 306 oriented along the x axis by direct photoexcitation of selected red-shifted

Stark states in the presence of a weak (∼ 400µV cm−1) dc field [19]. This field is then turned

off and a transverse electric pump field F pump
y is suddenly applied along the −y axis creating

a wave packet that undergoes Stark precession [20, 21]. After a time Tpump = π/(3nF pump
y )

this precession transforms the wave packet into a superposition of high-angular-momentum

states (ℓ ∼ m ∼ n) whereupon F pump
y is turned off freezing the atom in a near-circular state

in the xy plane. The subsequent evolution is monitored by the application, at t = tp, of a

probe field F probe
x (or F probe

y ) along the x (or y) axis sufficient to ionize a significant fraction

of the atoms present. Depending on the choice of the probe field strength and duration,

the resulting survival probability mirrors the time dependence of the expectation values of

momentum, 〈px(tp)〉 (or 〈py(tp)〉), or of position, 〈x(tp)〉 or 〈y(tp)〉) [22, 23]. Additional

information on the degree of circularity of the wave packet is given in the supplemental

material [24]. The number of surviving atoms and their n distribution are measured by

selective field ionization. Survival probabilities are determined by periodically monitoring

the number of Rydberg atoms created through measurements with no pulsed fields applied.

Figure 1(a) shows survival probabilities measured as a function of the time delay between

the turn-off of the pump field F pump
y and application of a probe field F probe

y to monitor

〈y(t)〉. The build-up of strong oscillations points to formation of a localized wave packet

whose y coordinate varies sinusoidally as it orbits the nucleus. However, these oscillations

damp at later times as localization is lost due to dephasing. (At much later times, t ∼

450 ns, the components of the wave packet move back into phase leading to strong quantum

revivals [25].) As illustrated in Figs. 1(b) and (c), this dephasing can be suppressed by

application, at the time of optimum localization, tL ∼ 39 ns, of a linearly polarized sinusoidal

drive field ~F (t) ≃ ŷFdrv sin[ω(t−tL)] whose frequency, ω ∼ ωni
∼ n−3

i , matches the (average)

3



Kepler frequency of the wave packet. The drive field is produced using a 2 gigasamples/sec

arbitrary waveform generator and is initiated when the wave packet is localized on the +x

axis moving in the +y direction. Strong oscillations in survival probability are seen with

little evidence of decay even after ∼ 1µs demonstrating the realization of a Trojan wave

packet whose localization is maintained for many hundreds of orbits. A linearly polarized

sinusoidal field corresponds to a superposition of two counter-rotating circularly polarized

fields, one of which co-rotates with the Trojan wave packet [13]. The counter-rotating

component averages to zero and can be neglected, the “rotating wave approximation.” The

suppression of dispersion, i.e., of broadening in the azimuthal angle φ = arctan(y/x), by the

co-rotating circularly polarized component results from the torque it exerts. Trajectories

slightly advanced (delayed) in φ compared to the rotating field ~F suffer a torque

dLz

dt
= ẑ ·

(

~r × ~F
)

∝ −rFdrv sin∆φ , (1)

where ∆φ is the angle between the electron coordinate ~r and ~F . For trajectories with

∆φ > 0, (∆φ < 0) the angular motion is decelerated (accelerated) leading to stabilization

near ∆φ = 0, i.e., φ = ωt. Classical Poincaré surfaces of section (stroboscopic snapshots of

the phase space (see Fig. 2)) reveal the existence of stable islands around φ = ωt [9]. Due to

the cylindrical symmetry of the drive field with respect to the y axis, the system is effectively

two-dimensional and, for L ≃ 0, each trajectory is confined to a plane sharing the y axis.

We therefore introduce a new coordinate system (x̃, ỹ) by rotating the plane of orbit for each

trajectory so that they are all confined to the x̃ỹ-plane. The surfaces of section are taken

in the (r, φ̃) plane (φ̃ = arctan(ỹ/x̃)) by cutting the phase space at |L| ≃ n and Ly ≃ 0.

The stable islands are centered at φ̃ = π/2 and r = n2 (or |ω|−2/3). The drive frequencies in

Figs. 2(a) and 2(b) correspond to n = ni ∼ 305 and n ∼ 400, respectively. Since the units

are scaled to ni = 305, the stable island in Fig. 2(b) appears at r0 = r/n2
i = 1.7.

Because of the close quantum-classical correspondence in high Rydberg manifolds, the

stabilization present in the quantum-mechanical atom can be described using classical tra-

jectory Monte Carlo simulations [26] where an ensemble of points in phase space is used to

represent the wave packet. Initially, the ensemble approximates the phase space density of

the initial mix of Stark states [19]. Its time evolution is followed by solving the Hamilton

equation of motion for each trajectory leading to predictions that agree well with the mea-

sured results (see Fig. 1). Localization of a wave packet within the stable island suggests
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that if its position is changed near-adiabatically by, say, slowly down-chirping the frequency

of the drive field, the wave packet might remain trapped and be transported to near-circular

states of substantially higher n [16]. The chirp rate, |(ωf −ωi)/Tchirp|, where ωf,i = n−3
f,i and

Tchirp the transition time from ωi to ωf must be sufficiently slow that the atom can respond

adiabatically. For small changes in n, transport can be accomplished using a chirped field

of constant amplitude,

F (t+ tL) = Fdrv sin

(

ωit+
ωf − ωi

2Tchirp

t2
)

. (2)

However, as the atom moves towards states of much higher n, the amplitude of the drive

field must be reduced to preserve the size of the stable island and to limit field-induced

ionization. A drive field of the form

F (t+ tL) =
Fdrvn

4
i

n(t)4
sin

(

ωit +
ωf − ωi

2Tchirp

t2
)

(3)

with ωi+(ωf−ωi)t/Tchirp = 1/n(t)3 will preserve the scaled field strength at all times during

transport. In practice, a simple linear variation in amplitude also works well.

Figures 2(c) and 2(d) show simulations of the initial and final spatial distributions for

ni ∼ 305 atoms subject to a linearly chirped drive field, Eq. (2), with ωi ∼ 230 MHz,

ωf ∼ 104 MHz, Tchirp ∼ 1µs, and Fdrv = 2.5 mV cm−1, equivalent to driving from ni ∼ 305

to nf ∼ 400. The great majority (> 80%) of the electron trajectories lock to the drive field

and are transported to nf ∼ 400, i.e., from states localized at ri ∼ n2
i to rf ∼ n2

f ∼ 1.7n2
i .

Remarkably, transfer can be extended to much higher n if the amplitude of the drive field

is reduced. This is illustrated in Fig. 3 for a frequency chirp from ωi ∼ 230 MHz to

ωf ∼ 31 MHz, again over Tchirp ∼ 1µs. The energy distribution remains narrow and moves

steadily towards states of higher n ending near nf ∼ 600 (ωnf
∼ 31 MHz). (A small

fraction of the trajectories do not lock to the field and suffer little change in n.) Transport

to higher-n leads to an increase in the amplitude and to a decrease in the frequency of the

oscillations in 〈x(t)〉 and 〈y(t)〉 (Fig. 4(a)) and a decrease in the amplitude of the oscillations

in 〈px(t)〉 and 〈py(t)〉 (Fig. 4(b)). The final amplitude of 〈x(t)〉 is smaller than 〈y(t)〉. It

is important to note that this does not necessarily indicate increased ellipticity. Quite

the contrary, the distribution of scaled angular momenta perpendicular to the x̃ỹ orbital

plane L⊥0 = L̃z/n =
√

L2
x + L2

z/n becomes narrower (see Fig. 4(d)) and peaks at L⊥0 = 1

indicating that the final state is actually more circular than the initial state. The distribution
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of orbital planes results because the initial wave packet generated from the quasi-1D state

includes near-circular trajectories whose angular momenta are large in magnitude but whose

directions are not perfectly aligned with the z axis. These “misaligned” wave packets are

equally stable and their motions display larger oscillations in 〈y(t)〉 than 〈x(t)〉.

The simulations in Figs. 2(d) and 4 are confirmed experimentally by the selective field

ionization (SFI) spectra in Fig. 3 recorded under identical driving conditions. With no

chirping, a single SFI feature is seen that matches well that seen immediately after turn-off

of the pump field indicating that application of a (resonant) drive field leads to very little

energy broadening. With chirping, the SFI spectrum changes markedly and moves to lower

fields indicative of the population of higher n states. The widths and positions of the peaks

are similar to those seen following direct excitation of (low-ℓ) states with n ∼ 400 and

n ∼ 600 showing that chirping indeed populates a narrow distribution of higher-n states.

A small later-time feature remains in both spectra that corresponds to ionization of states

with n ∼ ni demonstrating that, as suggested by the simulations, a small part (< 20%) of

the parent wave packet is not positioned within the stable island and is not transported to

higher n states.

The production of very-high-n wave packets is further demonstrated by the changing

periods of the oscillations in survival probability observed during chirping (see insets in

Fig. 3), the period changing from the Kepler period for ni ∼ 305 to that for n ∼ 600.

The large amplitude of the oscillations, which are in good agreement with simulations,

demonstrate that the wave packet remains circular and locked to the drive field. (Similar

oscillations are seen with the probe field applied along the x axis also consistent with the

creation of a high-ℓ wave packet.) Remarkably, simulations suggest that transport to n ≃ 600

results in even better localization (see insets in Fig. 3.)

The present work presents an unambiguous realization of non-dispersive Trojan wave

packets in very high n atoms using sinusoidal driving fields. Their remarkable stability

might be exploited to trap coherent circular states and prevent their dephasing (almost)

indefinitely. The ability to generate very-high-n near-circular Bohr-like states provides a

necessary first step towards creating long-lived two-electron excited states [27]. The first

excited electron remains well separated from the core ion which then behaves as an isolated

particle. For alkaline earth metals such as strontium, the core ion is optically accessible

facilitating excitation of a second inner electron [28]. Because the outer very-high-n electron
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is only weakly coupled to the core ion, the resulting two-electron excited states will not

undergo rapid autoionization, rather the core ion will fluoresce allowing the Rydberg atom

to be imaged and to be optically trapped. Excitation of an inner electron to a high-n state

also admits the possibility of creating “planetary atoms” [29–31] in stable highly-correlated

multiply-excited states.
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FIGURES

FIG. 1. (Color online) Experimental (symbols) and calculated (lines) survival probabilities versus

the time of application of a 6 ns, 100 mV cm−1 probe pulse after turn-off of an 85 ns, 5 mV cm−1

pump pulse: (a) results with no drive field present, (b) and (c) results with 2.5 mV cm−1, 230 MHz

sinusoidal drive field initiated at tL ∼ 39 ns. The pump, drive, and probe fields are all applied

along the y axis. The inset shows the pulse sequence applied to the parent quasi-1D atoms.
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FIG. 2. (Color online) Poincaré surfaces of section for a Rydberg atom driven by a linearly polarized

field ~F (t) ≃ ŷFdrv sin[ω(t − tL)] with Fdrv = 2.5 mV cm−1 and values of ω of (a) 230 MHz and

(b) 104 MHz. The surfaces of section (r/n2
i , φ̃) in the rotated frame are obtained by cutting phase

space at L ≃ n and Ly ≃ 0. The stroboscopic snapshots are taken when ~F (t) reaches its maximum,

i.e., at ω(t − tL)=π/2 (modulo 2π). (c) and (d) initial and final spatial densities in the (r/n2
i , φ̃)

plane for a near-circular ni = 305 wave packet driven by a sinusoidal field with Fdrv = 2.5 mV cm−1

chirped from 230 to 104 MHz over 1 µs.

FIG. 3. (Color online) Selective field ionization spectra showing ionization signals observed as a

function of field applied along the y axis. The spectra were obtained after driving by: (black)

an unchirped sinusoidal drive field as in Fig. 1, (red) the same chirped drive field as for Fig.2(d),

and (blue) the same drive field as for Fig. 4. The graphical insets show measured (symbols) and

calculated (line) survival probabilities versus time of application of a 6-ns-long probe pulse sufficient

to ionize, on average, ∼ 50% of the atoms. The other insets show snapshots of the calculated spatial

distributions in the x0y0 plane (x0, y0 = x, y/n2
i ) for the conditions/times indicated.

FIG. 4. (Color online) Evolution of (a) 〈x(t)〉, 〈y(t)〉, (b) 〈px(t)〉, 〈py(t)〉, (c) the energy distribution,

and (d) the distribution of scaled transverse angular momentum for a near-circular ni ∼ 305 wave

packet initially localized in the xy plane and subject to a sinusoidal drive field whose frequency

is chirped from 230 to 31 MHz over 1 µs, while linearly decreasing its amplitude from 2.5 to

1.3 mV cm−1. The spatial coordinates, momenta, and energy are scaled to ni: x0, y0 = x, y/n2
i ,

px0, py0 = nipx, nipy, and E0 = n2
iE. The angular momentum L⊥ is scaled to the time dependent

n.
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