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We apply the ab initio no-core shell model/resonating group method approach to calculate the
cross sections of the 3H(d,n)4He and 3He(d,p)4He fusion reactions. These are important reactions
for the Big Bang nucleosynthesis and the future of energy generation on Earth. Starting from
a selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-
nucleon data, we performed many-body calculations that predict the S-factor of both reactions.
Virtual three-body breakup effects are obtained by including excited pseudostates of the deuteron
in the calculation. Our results are in satisfactory agreement with experimental data and pave the
way for microscopic investigations of polarization and electron screening effects, of the 3H(d,γn)4He
bremsstrahlung and other reactions relevant to fusion research.

The 3H(d,n)4He and 3He(d,p)4He reactions are leading
processes in the primordial formation of the very light
elements (mass number, A ≤ 7), affecting the predic-
tions of Big Bang nuleosynthesis for light nucleus abun-
dances [1]. With its low activation energy and high
yield, 3H(d,n)4He is also the easiest reaction to achieve
on Earth, and is pursued by research facilities directed
toward developing fusion power by either magnetic (e.g.
ITER [2]) or inertial (e.g. NIF [3]) confinement. The
cross section for the d+3H fusion is well known exper-
imentally, while more uncertain is the situation for the
branch of this reaction, 3H(d, γn)4He, that is being con-
sidered as a possible plasma diagnostics in modern fu-
sion experiments [5]. Larger uncertainties dominate also
the 3He(d,p)4He reaction that is known for presenting
considerable electron-screening effects at energies acces-
sible by beam-target experiments. Here, the electrons
bound to the target (usually a neutral atom or molecule)
lead to enhanced values (increasingly with decreasing en-
ergy) for the reaction-rate, effectively preventing direct
access to the astrophysically relevant bare-nucleus cross
section. Consensus on the physics mechanism behind
this enhancement is not been reached yet [6], largely be-
cause of the difficulty of determining the absolute value of
the bare cross section. Past theoretical investigations of
these fusion reactions include various R-matrix analyses
of experimental data at higher energies [7–10] as well as
microscopic calculations with phenomenological interac-
tions [11, 12]. However, in view of remaining experimen-
tal challenges (some of which described above) and the
large role played by theory in extracting the astrophysi-
cally important information, it would be highly desirable
to achieve a microscopic description of the 3H(d,n)4He
and 3He(d,p)4He fusion reactions that encompasses the
dynamic of all five nucleons and is based on the fun-
damental underlying physics: the realistic interactions
among nucleons and the structure of the fusing nuclei.

In this Letter, we present the first ab initio many-body
calculation of the 3H(d,n)4He and 3He(d,p)4He fusion re-
actions starting from a nucleon-nucleon (NN) interaction
that describes two-nucleon properties with high accuracy.

The present calculations are performed in the framework
of the ab initio no-core shell model/resonating-group
method (NCSM/RGM) [13–15], a unified approach to
bound and scattering states of light nuclei. We use, in
particular, the orthonormalized many-body wave func-
tions (ν being the channel index)

|ΨJπT 〉 =
∑

ν

∫

drr2 Âν |Φ
JπT
νr 〉

[N−1/2χ]ν(r)

r
, (1)

with inter-cluster antisymmetrizer for the (A−a,a) par-
tition Âν , center-of-mass separation ~rA−a,a, and binary-
cluster channel states

|ΦJπT
νr 〉 =

[

(

|A−aα1I
π1

1 T1〉 |aα2I
π2

2 T2〉
)(sT )

× Yℓ (r̂A−a,a)
](JπT ) δ(r − rA−a,a)

rrA−a,a
. (2)

The inter-cluster relative-motion wave functions χJπT
ν (r)

satisfy the integral-differential coupled-channel equations

∑

ν′

∫

dr′r′ 2[N−
1

2HN−
1

2 ]νν′(r, r′)
χν′(r′)

r′
=E

χν(r)

r
(3)

with bound- or scattering-state boundary conditions.
Here, HJπT

νν′ (r, r′) and N JπT
νν′ (r, r′), commonly referred to

as integration kernels, are respectively the Hamiltonian
and overlap (or norm) matrix elements over the antisym-
metrized basis of Eq. (2). They contain all nuclear struc-
ture and antisymmetrization properties of the problem.
Here, we investigate reactions involving A=5 nucle-

ons, characterized by a deuteron-nucleus entrance and
nucleon-nucleus exit channels [a=2 and a=1 in Eq. (2),
respectively]. The NCSM/RGM formalism for an a=1
projectile was presented in Ref. [13], while the deuteron
projectile formalism was introduced in Ref. [15], where we
studied the d-4He system. To calculate the 3H(d,n)4He
and 3He(d,p)4He reactions, we had to address the addi-
tional contributions of matrix elements (2 for the norm
and 5 for the Hamiltonian kernel, respectively) between
the two mass partitions: (A−1,1) and (A−2,2). Such
technical details will be given elsewhere.
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TABLE I. Calculated g.s. energies and point-proton rms radii
of 2H, 3H, 3He, and 4He obtained by using the SRG-N3LO
NN potential with Λ=1.5 fm−1 are compared to the corre-
sponding experimental values. The NCSM calculations were
performed in an HO space with Nmax=12 and ~Ω=14 MeV.

Eg.s. [MeV] 〈r2p〉
1/2 [fm]

Calc. Expt. Calc. Expt.
2H -2.20 -2.22 1.84 1.96
3H -8.27 -8.48 1.64 1.60
3He -7.53 -7.72 1.81 1.77
4He -28.22 -28.29 1.49 1.467(13)

The input into Eq. (3) are: (i) the nuclear Hamil-
tonian, particularly the chiral N3LO NN potential of
Ref. [16], which we soften by a similarity renormaliza-
tion group (SRG) transformation [17, 18] characterized
by an evolution parameter Λ; and (ii) the eigenstates of
the interacting nuclei, i.e. 2H, 3H, 3He and 4He, cal-
culated within the NCSM [19]. In this first attempt of
providing an ab initio description of the d+3H (d+3He)
fusion, we omit both the chiral and SRG-induced three-
nucleon (NNN) force components of the Hamiltonian,
and select a value of the SRG parameter (Λ=1.5 fm−1)
for which we reproduce the experimental Q value of both
reactions within 1%. While a complete (Λ-independent)
calculation should include these terms (and efforts in this
direction are under way), we argue that this is a fair ap-
proximation for the time being. Indeed, for these very
light nuclei the initial attractive chiral NNN force can-
cels to some extent with that induced by the SRG evo-
lution of the NN potential, which is repulsive in this Λ
range [20]. Important for determining the magnitude of
the fusion reactions considered here is the Coulomb inter-
action. The NCSM/RGM allows for a proper handling
of such interaction (particularly its long-range compo-
nent, which is treated exactly), as described in Refs. [13]
and [15]. Further, even though the fusion proceeds at
very low energies, the deformation and virtual breakup
of the reacting nuclei cannot be disregarded, particularly
for the weakly-bound deuteron. A proper treatment of
deuteron-breakup effects requires the inclusion of three-
body continuum states (neutron-proton-nucleus) and is
very challenging. In this first fusion application we limit
ourselves to binary-cluster channels and approximate vir-
tual three-body breakup effects by discretizing the con-
tinuum with excited deuteron pseudostates, strategy that
proved successful in our d-4He calculations [15]. This
gives rise to a large number of channels (different ν val-
ues): 51 (only 4 of which are open in the energy range
of interest) in, e.g., the largest present calculations for
the 3/2+ partial wave. Finally, we solve Eq. (3) using
the microscopic R-matrix method on a Lagrange mesh
that has been proven to be very accurate [21]. We check
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FIG. 1. (Color online) Calculated elastic n-4He (a), d-3H
and d-3He (b) phase shifts. The dashed (dotted) lines are ob-
tained with (without) coupling of the n(p)-4He and d-3H(3He)
channels and all nuclei in their g.s. The full lines represent
calculations that further couple channels with one 3S1−

3D1

deuteron pseudostate. The SRG-N3LO NN potential with
Λ=1.5 fm−1 and the HO space with Nmax=12 (Nmax=13 for
the negative parity) and ~Ω=14 MeV were used.

the convergence of the solution by varying the number of
mesh points (≥ 40) and the matching radius (≥ 20 fm).

We start by discussing our results for the ground states
(g.s.) of d, 3H, 3He and 4He, the energies and radii of
which are compared to experiment in Table I. The soft
NN interaction (SRG-N3LO with Λ=1.5 fm−1) and har-
monic oscillator (HO) frequency (~Ω=14 MeV) adopted
are the same as in the d-4He study of Ref. [15]. Energy
convergence (at the ≤ 20 keV level) is reached for an
HO basis size of Nmax=12, where we also find a weak
frequency dependence in the range 11≤~Ω≤18 MeV.

Next, we consider the elastic phase shifts for both en-
trance and exit channels. In the past, we had already
studied n(p)-4He scattering within the NCSM/RGM [13,
14]. Here, we extend those calculations by including the
coupling to the d-3H (d-3He) channels. The impact of this
coupling can be judged (in the n-4He case) from Fig. 1(a).
Besides a slight shift of the P -wave resonances to lower
energies, the most striking feature is the appearance of
a resonance in the 2D3/2 partial wave, just above the
d-3H (d-3He) threshold. The further inclusion of distor-
tions of the deuteron via an 2H 3S1-

3D1 pseudostate (d
∗),



3

10 100 1000
E

kin
 [keV]

0

5

10

15

20

25

30

35

S-
fa

ct
or

 [
M

eV
 b

]

BR51
AR52
CO52
AR54
He55
GA56
BA57
GO61
KO66
MC73
MA75
JA84
BR87
0d*+0d’*
1d*+1d’*
3d*+3d’*
5d*+5d’*
7d*+5d’*
9d*+5d’*

d+
3
H → n+

4
He(a)

10 100 1000
E

kin
 [keV]

0

5

10

15

20

S-
fa

ct
or

 [
M

eV
 b

]

Bo52
Kr87
Sch89
Ge99
Al01
Al01
Co05
0d*+0d’*
1d*+1d’*
3d*+3d’*
5d*+5d’*
7d*+5d’*
9d*+5d’*

d+
3
He → p+

4
He

(b)

FIG. 2. (Color online) Calculated S-factors of the 3H(d,n)4He
(a) and 3He(d,p)4He (b) reactions compared to experimental
data. Convergence with the number of deuteron pseudostates
in 3S1−

3D1 (d∗) and 3D2 (d′∗) channels is shown. See also
caption of Fig. 1 for details on interaction and HO space used.

enhances this resonance, while leaving the other partial
waves mostly unaffected. In Fig. 1(b), the inclusion of
n-4He (p-4He) channels brings a repulsive effect into the
2S1/2 phase shifts due to the Pauli blocking. At the same
time, it also removes flux from the 4S3/2 d-3H (d-3He)
channel, slightly suppressing the elastic 4S3/2 phase shift.
However, this near-threshold resonance (where projectile
and target spins are aligned) is enhanced by distortions
of the deuteron [see also Fig. 3(b)].

Finally, from the scattering matrix elements we obtain
the 3H(d,n)4He and 3He(d,p)4He cross sections. The cor-
responding S-factors are compared to various data sets in
panels (a) and (b) of Fig. 2, respectively. The deuteron
deformation and its virtual breakup play a crucial role.
We show in particular the dependence on the number
of 2H pseudostates in the 3S1-

3D1 (d∗) and 3D2 (d′∗)
channels, included in the calculation. Energies of these
pseudostates can be found in Table II of Ref. [15]. The
S-factors increase dramatically with the number of pseu-
dostates until convergence is reached for 9d∗ +5d′∗. Our
calculation depends also on the size of the HO basis used
to expand the eigenstates of the reacting nuclei as well
as the localized parts of the integration kernels (see Eqs.
(5), (6) and Sec. II. B. of Ref. [13]). As for the bound

states, we find a satisfactory convergence [see Fig. 3(a)].
Before demonstrating this point in more detail, here we
would like to discuss the comparison with data.

The experimental position of the 3He(d,p)4He S-factor
maximum is well reproduced (within few tens of keV)
in our calculations [Fig. 2(b)]. Overall, the agreement
with experiment is quite reasonable, except at very low
energies where the beam-target data are enhanced by
the electron screening. For the 3H(d,n)4He S-factor, the
absolute difference between theoretical and experimen-
tal peak positions (∼ 10 keV) is of the same order of
magnitude found in the d-3He case, however the relative
difference is much larger for such a low-energy resonance.
As a consequence, the 3H(d,n)4He S-factor maximum is
somewhat underestimated in our calculations and, hence,
the calculated S-factor underestimates the data below
∼ 70 keV. The inclusion of the NNN force (chiral and
SRG-induced) into the calculation should provide closer
agreement with experiment, although possibly it would
require an NNN interaction accuracy beyond what is
currently used in theoretical nuclear physics. In obtain-
ing the eigenstates of the reacting nuclei, we take into
account Coulomb and isospin breaking of the NN inter-
action. At the same time, we perform isospin projections
when evaluating the NCSM/RGM kernels. It is therefore
understandable that the splitting between the two peaks
may become slightly underestimated in our calculations,
so that it is hard to reproduce them equally well simul-
taneously and a certain amount of tuning of the nuclear
interaction may be unavoidable.

To reproduce the position of the 3H(d,n)4He S-factor
maximum, we performed additional calculations using
SRG-N3LO NN potentials with a lower Λ. Using
Λ=1.45 fm−1, we are able to reproduce the experimental
position of the maximum (we find also a 0.6% variation
of the calculated Q value, towards even closer agreement
with the measured one). The theoretical S-factor is then
in an overall better agreement with data, although it is
slightly narrower and its peak is somewhat overestimated
[Fig. 3(a)]. This calculation would suggest that some
electron screening enhancement could be also present in
the 3H(d,n)4He measured S-factor below ∼ 10 keV.

Finally, the convergence of the calculation with respect
to HO basis size and number of deuteron pseudostates is
very similar for the two Λ values considered. In Fig. 3(a),
we present the 3H(d,n)4He S-factor dependence on the
size of the HO basis for Nmax=8−12. We find a satis-
factory convergence and expect that an Nmax=14 calcu-
lation, which is currently out of reach due to computa-
tional reasons, would not be significantly different from
the present results. Also, in Fig. 3(b) we show the con-
vergence of the 4S3/2 and 2D3/2 phase shifts with the
number of deuteron pseudostates in the vicinity of the
3/2+ 3H(d,n)4He resonance. This picture is also interest-
ing as it highlights how the 3H(d,n)4He and 3He(d,p)4He
fusion processes proceed through the 4S3/2 resonance in
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FIG. 3. (Color online) Calculated S-factor of the 3H(d,n)4He
reaction compared to experimental data (a) and diagonal
2D3/2 n-4He and 4S3/2 d-3H phase shifts (b). Convergence
with Nmax and the number of deuteron pseudostates in
3S1−

3D1 (d∗) and 3D2 (d′∗) channels are also shown in (a)
and (b), respectively. The Nmax=8, 10, and 12 results con-
tain 9d∗ plus 3, 4, and 5d′∗, respectively. The n-4He kinetic
energy is shifted by the d−3H threshold energy. The SRG-
N3LONN potential with Λ=1.45 fm−1 and the HO frequency
~Ω=14 MeV were used.

TABLE II. Calculated S-factors at zero energy compared to
the R-matrix data evaluation of Ref. [10]. The NCSM/RGM
calculations as described in Figs. 3 and 2 for 3H(d,n)4He and
3He(d,p)4He, respectively.

S(0) [MeV b] 3H(d,n)4He 3He(d,p)4He

SRG-N3LO NN 10.0± 0.5a 6.0± 0.2

R-matrix data eval. 11.7 ± 0.2 5.9± 0.3

a Λ=1.45 fm−1. With Λ=1.5 fm−1 (S(0)=7.5±0.5 MeV b) the
S-factor peak is not in the right position.

the entrance channel and the 2D3/2 resonance in the exit
channel. The tensor interaction, which is automatically
included in the accurate NN potentials we are using, is
indispensable for the reaction to take place. Unlike the
4S3/2, the

2D3/2 phase shift does not cross 90 degrees,
remaining positive near the resonance. We note the sim-
ilarity of our calculated phase shifts with those extracted
from the data by using the single-level R-matrix fit of
Ref. [8]. In Table II, we summarize our S(0) values and
compare them to the R-matrix analysis of Ref. [10].

In conclusion, we performed ab initio many-body cal-
culations of the 3H(d,n)4He and 3He(d,p)4He fusion re-
actions. Our results are promising and pave the way

for microscopic investigations of polarization and electron
screening effects, of the 3H(d,γn)4He bremsstrahlung and
other reactions relevant to fusion research that are less
well understood or hard to measure. Our calculations can
be further improved by including additional five-body
correlations, e.g., virtual breakup of 3H (3He). This can
be best done by coupling the NCSM/RGM binary-cluster
basis with the NCSM calculations for 5He (5Li) as out-
lined in Ref. [22]. Virtual excitations of the deuteron
should be treated by considering explicitly n-p-3H(3He)
three-cluster channels. The inclusion of NNN interac-
tions, both chiral and SRG-induced [20], is also desirable.
Efforts in these directions are under way.
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