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A classical one-time pad allows two parties to send private messages over a public classical channel
– an eavesdropper who intercepts the communication learns nothing about the message. A quantum
one-time pad is a shared quantum state which allows two parties to send private messages or
private quantum states over a public quantum channel. If the eavesdropper intercepts the quantum
communication she learns nothing about the message. In the classical case, a one-time pad can be
created using shared and partially private correlations. Here we consider the quantum case in the
presence of an eavesdropper, and find the single letter formula for the rate at which the two parties
can send messages using a general quantum state as a quantum one-time pad. Surprisingly, the
formula coincides with the distillable entanglement assisted by a symmetric channel, an important
quantity in quantum information theory, but which lacked a clear operational meaning.

PACS numbers:

If two parties wish to send private messages over a
public channel, then they need to share a one-time pad
or key – perfectly correlated and private strings which are
as long as the messages they want to send. Often, the
strings they share are not perfectly correlated or not com-
pletely secure e.g. if produced through a channel subject
to wire-tapping. However, they can perform a protocol
over the public channel to reconcile the errors in their
strings, and amplify the privacy, so that they share a
shorter string which is perfectly correlated and private.
Given access to many independent realizations of some
distribution PXYZ shared between the two parties, Alice
(X) and Bob (Y), and an eavesdropper Eve (Z), the rate
C(PXY Z) at which Alice can send private messages to
Bob was derived in [1], based on a celebrated result due
to Wyner and Csiszar & Korner [2, 3]. It reads [29]

C(PXY Z) = sup
X→V→U

I(V : Y |U)− I(V : Z|U), (1)

with the conditional mutual information I(V : Y |U) :=
H(V U) +H(Y U)−H(V Y U)−H(U), the Shannon en-
tropy H(X) := −

∑
x PX=x logPX=x and the supremum

taken over the Markov chain X → V → U .
As Equation (1) play such a central role in classical in-

formation theory, understanding it in the quantum case
would be an important step. Even just defining the quan-
tum version of this scenario is important conceptually,
as there are several possibilities, and indeed, it was not
even clear that a quantum version existed which would
be closely analogous to the classical case. Given that
privacy is such a key property of shared quantum states,
understanding it from an information-theoretic point of
view analogous to Eqn. (1) has been desirable. Indeed,
privacy considerations have historically laid the founda-
tions of quantum information theory – quantum key dis-
tribution [4] was one of the big motivations for the field,
and the first entanglement distillation protocols [5] were
inspired by the same classical privacy amplification pro-

tocols which attain Eqn. (1).
Here, we consider the quantum analog of the classi-

cal scenario: three parties, Alice, Bob and Eve, who in-
stead of sharing a classical distribution, share a quan-
tum state ψABE . Alice then wishes to send private mes-
sages or private quantum states to Bob over a quantum
public channel i.e. an insecure quantum channel where
the eavesdropper might intercept the sent states. The
question of how many private messages can be sent us-
ing a shared state was posed and answered by Schu-
macher and Westmoreland [6] in the case where initially
the eavesdropper is uncorrelated with the two parties
(ψABE = ψAB ⊗ ψE), and the sent messages are clas-
sical. They proved that the rate of classical private mes-
sages which can be sent is given by the quantum mutual
information I(A : B) := S(A) + S(B) − S(AB), with
S(A) = −Tr(ρA log ρA) the von Neumann entropy.
Here, we consider the general case where the two par-

ties want to protect themselves against an eavesdropper
who might be correlated with their state. We also ex-
tend the result to the case where the parties wish to
send encrypted quantum states to each other, i.e. any
d-dimensional input state ψK is encrypted so that during
transmission it is indistinguishable from the maximally
mixed state (I/d). This makes the scenario a more fully
quantum version of the classical situation. We show, in
surprising analogy with the classical case, that the rate
Q that Alice can send encrypted messages to Bob using
the state ψABE is

C(ψABE) = sup
A→aα

(I(a : B|α)− I(a : E|α)), (2)

with the conditional mutual information I(a : B|α) :=
S(aα) + S(Bα) − S(aBα) − S(α) and the supremum
taken over channels with input space A and output space
aα. The rate for sending encrypted quantum states, in
turn, is given by Q(ψABE) = C(ψABE)/2. Note that
this optimisation is over single copies of the state ψABE
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making the result of Equation (2) single-letter. This is
rare in quantum information theory, where usually the
solutions are intractable, requiring optimisation over ar-
bitrary many copies of the state [30].
Using simple entropic identities, one sees that the

right hand side of Eq. (2) (divided by half) is equal
to 1

2 (I(a : Bα) − I(a : Eα)), a quantity which has made
an early appearance in Ref. [7] as the distillable entan-
glement assisted by symmetric-side channels. The iden-
tification of the optimal rates in the quantum one-time
pad problem and in entanglement distillation assisted by
a symmetric channel is not merely coincidental: to prove
Eq. (2) we will show how an insecure quantum channel
can, in a precise sense, simulate the action of a symmetric
channel.

Statement of the problem. The scenario is as fol-
lows: Alice and Bob share many copies of a quantum
system in a (generally mixed) state ψAB and since we
want to protect against an arbitrary eavesdropper, we
should imagine that Eve might have any state such that
TrE |ψ〉ABE〈ψ|ABE = ψAB, i.e. the eavesdropper might
hold a purification of Alice and Bob’s state. Alice is given
a message, either classical or quantum, which she should
communicate to Bob. She is able to implement arbitrary
quantum operations on her share ψ⊗n

A of the state and
any local ancillas, and she then sends a quantum system
in state ρα to Bob down an insecure quantum channel,
which might be intercepted by Eve. In the case where
Eve intercepts ρα, she should learn an arbitrarily small
amount of information about the message. In the case
where Bob receives the state, he should be able to re-
cover the message with probability converging to one in
the limit of large n. More formally:

Definition 1 (private state transfer) Consider the
message state ΨKR shared between the sender Alice
and a reference. Let Alice, Bob and Eve share the
state |ψABE〉

⊗n and have further registers a, α and
b for Alice and Bob, respectively. Consider Alice’s
local operation (a completely positive trace preserving
map) MA : AK −→ aα and Bob’s local operation
MB : Bα −→ b. Then a private state transfer protocol
for ΨKR has error δ and security parameter ǫ, if

‖ρbR −ΨKR‖1 ≤ δ, (3)

and

‖ρ̃REα − ρ̃R ⊗ ρ̃Eα‖1 ≤ ǫ, (4)

where

ρRaαBE := MA(ΨKR ⊗ ψ⊗n
ABE), (5)

and

ρ̃RabE := MB ◦MA(ΨKR ⊗ ψ⊗n
ABE). (6)

For classical messages we let ΨKR = 1
d

∑
k |kk〉〈kk|KR

and define the optimal rate C(ρAB) as the ratio of log(d)
per n, for the largest d for which a private state transfer
protocol is possible, with negligible error for asymptotic
large n. For the optimal rate of quantum messages, in
turn, we set |ΨKR〉 =

1√
d

∑
k |k, k〉KR and define Q(ρAB)

as the asymptotic optimal ratio of log(d)/n, over all pri-
vate state transfer protocols.

Schumacher-Westmoreland scheme. To prove Eq.
(2), we will make use of the result from [6] for the one-
time-pad in the case where the message is classical and
the state ρAB shared by Alice and Bob is not correlated
with Eve. The main point of the argument is the con-
struction of a set of quantum operations { Ek,n} on Al-
ice’s system and a probability distribution {pk,n} such
that in the limit of large n,

1

n
χ({pk,n, Ek,n ⊗ IB(ψ

⊗n
AB)}) → I(A : B)ρ, (7)

and

1

n
χ({pk,n, Ek,n(ψ

⊗n
A )} → 0, (8)

where χ({qk, σk}) := S(
∑
k qkσk) −

∑
k qkS(σk) is the

Holevo information [8]. By the HSW theorem [9] Alice
can then send secret classical messages to Bob at a rate
I(A : B) by applying one of the Ek,n operations to her
part of the state and sending it down the insecure chan-
nel. Eq. (7) guarantees that Bob is able to decode Alice’s
message in the case the channel is not tampered, while
Eq. (8) ensures that Eve does not learn anything from
the message being sent by intercepting the channel.

Mutual independence. A natural quantity which will
arise in our discussion is the so-called mutual indepen-
dence IΛ [10], which we now define. Consider some se-
quence of maps Λ(n), from a restricted class of operations
Λ, applied to subsystem AB with the property that

ρ
(n)
ABE := Λ(n) ⊗ IE(ψ

⊗n
ABE) (9)

is such that

‖ρ
(n)
ABE − ρ

(n)
AB ⊗ ρ

(n)
E ‖1 → 0. (10)

Then

Definition 2 (mutual independence) Given a state
ψAB, consider a protocol from a class of operations Λ
for extracting mutual independence P = Λ(n). Define the
rate

R(P , ρAB) := lim inf
n→∞

1

2
I(A : B)Λn(ψ⊗n

AB
). (11)

Then we define the mutual independence rate of ψAB as

IΛ(ρAB) := sup
P
R(P , ψAB). (12)
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The quantity IΛ can be thought of as the rate of pri-
vate mutual information that can be extracted from a
state under the class of operations Λ. As an immediate
consequence of Schumacher-Westmoreland construction
and Definition 2, we find that C(ψAB) is lower bounded
by ILO(ψAB), where LO is the class of local operations
on Alice and Bob systems. It turns out, perhaps sur-
prisingly, that local operations are not the right class of
operations to be considered here.
As we show, the rate of private messages that can be

sent is given by Iss(ψAB), the mutual independence when
Λ is the class of local operations assisted by a symmetric-
side channel. This is a channel given by an isometry
followed by partial trace ψA → TrE ρBE such that ρBE
is unchanged after interchanging system E with system
B. In [11], it is shown that

Iss(ψAB) = sup
A→aα

1

2
(I(a : B|α) − I(a : E|α)) (13)

where the supremum is taken over channels A→ aα.
Main result. We now show

Theorem 3

Q(ψAB) = C(ψAB)/2 = Iss(ψAB) (14)

Proof We begin by considering C(ψAB), i.e. Alice
wishes to send Bob a private classical message, and will
then prove the result forQ(ψAB). To see that Iss(ψAB) ≥
C(ψAB)/2, consider an optimal protocol for C(ψAB),
which can always be taken to be as follows: Alice ap-
plies the quantum operation Ek,n ⊗ IBE with probability
pk,n, generating the ABE ensemble {pk,n, Ek,n(ψABE)},
with ρα = Ek,n(ψA) being sent to Bob, and k the private
message to be communicated. Then we have

C(ψAB) = lim
n→∞

1

n
χ(pk,n, Ek,n ⊗ IB(ψAB)). (15)

Consider the state after Alice’s optimal local operation

ρnKαBE :=

N∑

k=1

pk,n|k〉K〈k| ⊗ (Ek,n ⊗ IBE) (ψABE) (16)

Then, from Eq. (13) we get

Iss(ψAB) ≥
1

2
(I(K : Bα)ρ − I(K : Eα)ρ) . (17)

But I(K : Bα)ρ = χ(pk,n, Ek,n ⊗ IB(ψAB)) and I(K :
Eα)ρn/n → 0 with increasing n, since Ek,n ⊗ IE(ψAE)
must satisfy Condition (4) and be asymptotically in-
dependent of k [31]. Therefore we get Iss(ψAB) ≥
C(ψAB)/2.
Next we need to show that Iss(ψAB) ≤ C(ψAB)/2.

First, suppose that on top of the insecure ideal quantum
channel Alice and Bob have access to a symmetric-side

channel. Then they could distill Iss(ψAB) of mutual in-
dependence, using the symmetric side-channel. They are
now in the situation considered by Schumacher andWest-
moreland, who showed that in the case where Alice and
Bob are initially product with Eve, C(ψAB) = I(A : B).
Thus here we would get C(ψAB) = 2Iss(ψAB) of secure
classical communication.

Of course in the setting we are considering, they do not
have access to the symmetric side-channel. However sup-
pose Alice simulates locally the side-channel, sends the
part that would go to Bob through the insecure quan-
tum channel and traces out the part which would go to
Eve. Then, on one hand, if Eve does not intercept the
channel, Bob will get his share of what is send through
the symmetric side-channel and they can distill at least
Iss(ψAB) of weak mutual independence and achieve the
rate C = 2Iss(ψAB). I.e. if Eve doesn’t get her share
of the output α′ of the symmetric side-channel Alice and
Bob can not be in a worse position than if she did receive
it. On the other hand, if Eve intercepts the state sent
through the insecure channel, then this is the same state
she would get in the case they were connected by a sym-
metric side-channel (because what goes to Bob and Eve
is symmetric), so Eve must still be decoupled from Alice’s
final state. This is so because Alice and Eve’s state must
be product in the end of the protocol for distilling mutual
independence. Thus she gets no information about ρK .

This proves C = 2Iss(ψAB). That Q(ψAB) =
C(ψAB)/2 comes from the fact that instead of using the
quantum one-time pad to send private messages, Alice
and Bob could just as well use it to share a classical pri-
vate key

∑
|kk〉〈kk|AB/d

2. This key can then be used to
encrypt quantum states which can then be sent through
the insecure quantum channel.

It is known [12–14] that the amount of key required to
encrypt a state of dimension d is given by 2 log d. In more
detail, The procedure for encrypting a quantum state is
for Alice to perform randomizing unitaries

∑
k |k〉〈k|⊗Uk

controlled on the classical key where Uk is a complete set
of unitaries acting on the state she wants to encrypt. Bob
can then decrypt the quantum state by performing U †

k .
E.g. to encrypt a qubit, Alice acts one of the four Pauli
operators I, σx, σy, σz with the choice of which operator
to act decided by two bits of key. ⊓⊔

Note that when we are using the key to encrypt quantum
states, we can modify the protocol slightly to include an
authentication step [15, 16] so that if at some later point,
Bob is allowed at least one bit of backwards communica-
tion, the key can be recycled [15, 17] and used to encrypt
more quantum states. The bit of back-communication is
required to signal to Alice that the protocol succeeded
(i.e. that Eve didn’t disturb the sent states too much)
and is not part of the original scenario considered here.
However, in such a case, one can prove that the one-time
pad can be recycled in the case where we are using it to



4

send quantum states [17]!

A direct protocol. We can also construct a different
protocol which encrypts quantum states directly using
the one-time pad without first using it to create a classical
key. This results in a saving of log d uses of the public
quantum channel.

Recall that to create a classical key, Alice applies
Ek ⊗ IBE(ψ

⊗n
ABE) conditioned on a random classical vari-

able k. To encrypt a quantum state directly, Alice ap-
plies Ek coherently, controlled on her half K of the en-
tangled state ψKR =

∑
pk|k〉R|k〉K , i.e. she performs

the operation
∑

|k〉〈k|K ⊗ Vk, where Vk is an isomet-
ric extension of the operation Ek. This produces the
total state |Ψ〉 =

∑
pk|k〉R|k〉K |ψk〉αα′BE where ρkα′ is

the local environment produced under the action of map
Ek and ρα is its output. Alice then sends ρα to Bob,
who can then coherently decode ρkαB producing the state∑
pk|k〉R|k〉K |k〉B′ |ψ0〉αα′BE . The protocol is thus far

secure, because after tracing out system K, the state
ρRαE is exactly the same as in the case of sending a clas-
sical message, and thus satisfies the privacy condition
(4).

Since the state
∑
pk|k〉R|k〉K |k〉B′ has S(K|B′) = 0,

Alice can merge [18] her share (K) of the state to Bob
by performing a complete measurement in a random ba-
sis and communicating the result to Bob. In [18] it was
shown that S(K|B′) is the amount of EPR pairs that
is needed to send Alice’s share K of |ψ〉KB′R by per-
forming a measurement and if S(K|B′) = 0, then no
additional EPR pairs are needed. Alice’s merging mea-
surement completely decouples the K system from the
reference, with the result that if Alice sends the remain-
der of her systems to Bob, the state must have been
transmitted. She could also perform a measurement in
the Fourier basis and communicate the result. Since the
measurement is complete, the number of measurement
outcomes is just nH(K), and because we wish Eve to
learn no information about the state, Alice needs to use
an additional nH(K) of the quantum one-time pad to
encrypt the measurement result and send it.

Alice’s measurement result is independent of the final
state (as in teleportation [19]) so we can do the measur-
ing and sending coherently, which will result in nH(K)
EPR pairs being created [20] in the case where Eve does
not interfere with the channel. However, these EPR pairs
can only be used at some later time if Bob verifies that he
received them using an authentication scheme involving
at least one bit of back-communication [16]. Note that
if R is held by Alice, both protocols for sending quan-
tum states can also be used to create secure EPR pairs
between Alice and Bob.

The direct protocol for encrypting quantum states uses
log d less uses of the channel than if we first create a
classical key, and then send encrypted quantum states.
As a result, log d less bits of key is left over if we are

allowed back communication at some later point in time
to recycle the key. This is in keeping with a fundamental
law of privacy [17] relating sent qubits (δQ), the change
in the amount of shared key (δK), and messages sent
(δM) (whether they be classical or quantum):

δK ≤ δQ− δM . (18)

It is also worth noting the connection between merg-
ing, and encryption of the quantum states in this case.
Encrypting the quantum state means that Alice’s share
of |Ψ〉KR should be decoupled from the reference R be-
fore being sent down the channel. At the same time,
this decoupling of the reference from Alice’s laboratory
is the condition for Alice to succeed in sending her share
[18, 21].

Approximate encryption with half key. As we have
noted, the condition for decoupling system K from the
reference R is that 2 log d unitaries are applied. It turns
out there is a weaker form of quantum state encryp-
tion, where only slightly more than log d bits of key are
used [22]. In such a case, the protocol is secure in the
sense that if a measurement were to be performed on
the reference system, then an eavesdropper would learn
an arbitrary small amount about the measurement re-
sult. We say that the level of security we obtain is not
composable [23, 24], meaning that if the reference sys-
tem remains unmeasured, and the eavesdropper does not
measure the parts of the quantum system she intercepted,
then we may lose security if we use the encrypted state
in another protocol.
We can easily construct an encryption scheme of this

sort, by adapting the first protocol we presented, so that
instead of choosing a complete set of 2 log d unitaries
Uk which act on the state we are encrypting, we choose
just over log d unitaries at random from the Haar mea-
sure [25]. Such a set is called randomizing rather than
completely randomizing. It is unclear whether the direct
protocol can be adapted in some way for approximate en-
cryption. This is because the protocol uses merging, and
thus the state to be sent must be completely decoupled
from the reference system.

Discussion. There are essentially two ways we have
used the quantum one-time pad. One way is to use ψAB
to obtain a correlated and private key, and then use this
key to encrypt messages (quantum or classical). The sec-
ond, is a generalisation of Schumacher and Westmoreland
[6] where the one-time pad is used directly to encrypt the
message. This also holds true in the case of classical dis-
tributions.
Our results can also be applied to channel coding,

where one has an authenticated noisy quantum channel,
which produces the state ψABE , and a public quantum
channel. Here we have just taken ψABE as a static re-
source, but we could have just imagined that it was pro-
duced by a channel from Alice to Bob and Eve. This
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is perhaps closest to a quantum version of the Csiszar-
Korner situation and gives a physical application to the
results of [7, 11, 26], about state and channel capacities
assisted by a symmetric-side channel.
We should thus think of a symmetric channel not as an

exotic side-channel which can be used in conjunction with
a standard quantum channel. Rather, results which make
use of a symmetric channel can be applied to the situation
where an eavesdropper might intercept the quantum sys-
tems that are sent down an insecure channel. This gives
further motivation to the notion of the public quantum
channel as emphasised in [11].
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