

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Rheology of Ring Polymer Melts: From Linear Contaminants to Ring-Linear Blends

Jonathan D. Halverson, Gary S. Grest, Alexander Y. Grosberg, and Kurt Kremer Phys. Rev. Lett. **108**, 038301 — Published 18 January 2012 DOI: 10.1103/PhysRevLett.108.038301

Rheology of ring polymer melts: From linear contaminants to ring/linear blends

Jonathan D. Halverson,¹ Gary S. Grest,² Alexander Y. Grosberg,³ and Kurt Kremer^{1,*}

¹Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

²Sandia National Laboratories, Albuquerque, NM 87185, USA

³Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA

(Dated: November 23, 2011)

Ring polymers remain a major challenge to our current understanding of polymer dynamics. Experimental results are difficult to interpret because of the uncertainty in the purity and dispersity of the sample. Using both equilibrium and non-equilibrium molecular dynamics simulations we have systematically investigated the structure, dynamics and rheology of perfectly controlled ring/linear polymer blends with chains of such length and flexibility that the number of entanglements is up to about 14 per chain, which is comparable to experimental systems examined in the literature. The smallest concentration at which linear contaminants increase the zero-shear viscosity of a ring polymer melt of these chain lengths by 10% is approximately one-fifth of their overlap concentration. When the two architectures are present in equal amounts the viscosity of the blend is approximately twice as large as that of the pure linear melt. At this concentration the diffusion coefficient of the rings is found to decrease dramatically, while the static and dynamic properties of the linear polymers are mostly unaffected. Our results are supported by a primitive path analysis.

PACS numbers: 83.80.Tc, 83.10.Rs, 83.80.Sg

1

2

3

4

5

6

7

⁸ While much has been learned about linear and branched polymers [1, 2], a comparable understanding of ring or ⁹ cyclic polymers is lacking. Ring polymers, as they do not have free ends, represent the simplest model system where ¹⁰ reptation is completely suppressed. Also, mitochondrial and plasmid DNA are usually cyclic, and melts of rings are ¹¹ considered highly relevant model systems to understand chromatin folding in the cell nucleus [3, 4]. This makes ring ¹² polymers perfect test cases for both fundamental polymer and bio physics.

Early experimental studies on pure ring polymer melts gave inconsistent results most likely because the samples 13 ere contaminated with linear chains [5–7]. Also the existence of self-knots could not be controlled. More recently 14 experiments have been conducted [8] based on new characterization and purification techniques [9, 10]. For melts of 15 nonconcatenated polystyrene rings with molecular weight (MW) to entanglement MW ratios of 9.2 and 11.3, where 16 the entanglement MW is 17500 g/mol, Kapnistos et al. [8] reported that the stress relaxation modulus, G(t), follows 17 power-law decay with no sign of a rubbery plateau. The authors used scaling arguments to show $G(t) \sim t^{-2/5}$. 18 result in agreement with the data up to the terminal time. Milner and Newhall [11] introduced the "diffusion of 19 centrality" concept and mapped the ring conformations to annealed tree-like structures and found a similar prediction 20 of $G(t) \sim t^{-1/2}$. Kapnistos et al. [8] also reported that the smallest concentration of linear contaminants that affects 21 the rheology of the ring melt is almost two decades below the overlap concentration of the linear chains. Despite 22 the synthetic effort, the characterization and control of the experimental systems including polydispersity, knotting, 23 concatenation and linear contaminants is far from perfect. Because of this, computer simulations of optimized models, 24 which by now easily reach effective experimental molecular weights, are perfect to test concepts for precisely defined 25 systems under well-controlled conditions. Our own recent simulations [12] of a melt of nonconcatenated and unknotted 26 ring polymers have shown that $G(t) \sim t^{-\alpha}$ with α decreasing from 0.5 to 0.45 with increasing chain length. 27

Here we employ molecular dynamics (MD) simulations to study the structure, dynamics and rheology of ring/linear 28 polymer blends of equal chain length. We consider two lengths of N = 200 and 400 monomers per chain. For the 20 model used here the entanglement length of a melt of linear polymers is $N_e = 28 \pm 1$ [13] which corresponds to 30 $N/N_e \approx 7.1$ and 14.3 entanglements per chain. For this a bond bending potential along the chains is introduced, 31 leading to a Kuhn length of $l_k \cong 2.79 \sigma$ [13], σ being the unit of length. N_e is determined by a primitive path 32 analysis [13, 14], which is known to yield N_e values which properly reproduce rheological data [15, 16]. Our systems 33 are perfectly monodisperse, unknotted and nonconcatenated, allowing for a rather stringent test of currently discussed 34 concepts. Previous simulations of such mixtures have only considered short chain lengths and did not measure any 35 rheological properties [17, 18]. While different polymer melts can be related to each other by the N/N_e ratio, we note 36 that for the present comparison to experiment [8] also the ratio of the Kuhn length and the packing length l_k/p are 37 not that different, namely 6.5 for our simulation model [13] and 3.8 for a polystyrene melt [19]. 38

The topological constraint that a ring must remain unknotted and nonconcatenated leads to nontrivial behavior 39 ven for the static properties of a melt or concentrated solution of rings. Rings are found to be approximately Gaussian 40 at short chain lengths, while for larger lengths the nonconcatenation dominates the conformational statistics. Cates 41 and Deutsch [20] conjectured that the exponent in the mean-square gyration radius, $\langle R_q^2 \rangle \sim N^{2\nu}$, should be less than 42 = 1/2 and greater than 1/3 and used a simple free energy argument to arrive at a value of 2/5, which was later 43 supported by simulation [21, 22] and experiment [23] for systems with less than 13 entanglements per chain. However, for larger rings a scaling of $\langle R_g^2 \rangle \sim N^{2/3}$ has been shown [24–26]. Altogether we expect a smooth crossover from a Gaussian regime ($\nu = 1/2$) via a regime with $\nu = 2/5$ for rings of length of a few N_e to the "crumpled globule" regime 44 45 46 $(\nu = 1/3)$ for rings significantly exceeding N_e . The universal scaling behavior of $\langle R_a^2(N) \rangle$ for a pure ring polymer 47 melt is demonstrated in Fig. 1 using results from many different simulations. Only short-chain atomistic data for 48 polyethylene [27] deviate from the curve [28]. From $N/N_e \approx 15$ the onset of the collapsed regime is clearly observed 49 in agreement with the predictions of Vettorel et al. [24]. 50

We present new MD simulations using the same semiflexible bead-spring model [29] as in our previous work [12, 51 26]. The length, time and energy scales are σ , τ and ϵ , respectively. The production runs were carried out using 52 LAMMPS [30] with a time step of 0.01 τ and an overall monomer density of $\rho = 0.85/\sigma^3$. The largest simulations 53 ran in parallel on 2048 Blue Gene/P cores. Systems studied range from $\phi_{\text{linear}} \equiv M_{\text{linear}}/(M_{\text{linear}} + M_{\text{rings}}) = 0$ to 54 1, where M is the number of chains of a given architecture. For N = 200 the total number of chains ranged from 55 200-260 while for N = 400 the systems were composed of 200-400 chains. The initial configuration for each blend system with $\phi_{\text{linear}} \leq 0.115$ was created by adding linear chains at random locations within an equilibrated ring melt 57 configuration. Chains which most closely matched a Gaussian chain were taken from an equilibrated pure linear melt. 58 For the cases with $\phi_{\text{linear}} \approx 0.25$ and 0.5 the appropriate number of rings were randomly removed while for the case 59 with $M_{\rm rings} = 10$ and $M_{\rm linear} = 250$, rings were taken from an equilibrated pure ring melt and inserted into a linear ⁶¹ melt making sure that the nonconcatenation constraint was observed. Because these insertions lead to monomers $_{62}$ being very nearly overlapping, a short simulation was carried out for 100 τ while limiting the bead displacement at σ every step to 0.001 σ . During this short run the box size was increased linearly so as to give the correct density at the

FIG. 1. Universal behavior of $\langle R_g^2(N) \rangle$ for pure ring polymer melts. The data were obtained using different simulation methods and different models. The reference line with slope 1/5 corresponds to the Gaussian regime while that with a slope of -2/15corresponds to the collapsed regime. Representative conformations from Ref. [26] are shown.

final step. This procedure produces non-equilibrated starting configurations. Long MD simulations of $4 - 8 \times 10^7 \tau$ were performed to equilibrate each system where each architecture moved at least twice its root-mean-square gyration for radius and in some cases more than 20 times this value.

Results for the mean-square gyration radius for the rings and linear chains normalized by their respective pure 67 melt values are shown in Fig. 2(a). For the rings with N = 200, $\langle R_q^2 \rangle$ is found to increase with increasing linear 68 concentration. At $\phi_{\text{linear}} \approx 0.96$, $\langle R_q^2 \rangle = 45.3 \pm 2.2 \sigma^2$, which is 1.5 times larger than the value of the pure ring melt. 69 For a Gaussian ring $\langle R_g^2 \rangle = N l_k l/12 = 45.2 \sigma^2$, where l is the average bond length. For the rings with $\phi_{\text{linear}} \approx 0.96$ 70 the static structure function scales as $S(q) \sim q^{-2}$ for $2\pi/\langle R_q^2 \rangle^{1/2} < q < 2\pi/l_k$, even though the rings cannot sample 71 the whole conformational space of a Gaussian ring [31]. For the N = 400 systems a similar swelling behavior is found 72 for the rings. The linear chains are found to be Gaussian for all combinations of N and ϕ_{linear} . At small values 73 of ϕ_{linear} the rings are partially collapsed as discussed above. As the fraction of linear chains increases, the size of 74 the rings grows because it is entropically favorable for the linear chains to thread the rings. At infinite dilution the 75 nonconcatenation constraint vanishes and the rings are found to be multiply-threaded and nearly Gaussian [17, 31, 32]. 76 The diffusion coefficients, D, which are determined by the long-time behavior of the mean-square displacement of 77 the center-of-mass of the chains, are shown in Fig. 2(b). The diffusivity of the rings for both values of N is found 78

The content of mass of the endits, are shown in Fig. 2(b). The dimetry of the Higs for both values of N is found to steadily decrease with increasing fraction of linear chains until a dramatic decrease is observed. With the overlap concentration of linear chains being $c^* = \phi_{\text{linear}}^* \rho = N/(4/3)\pi \langle R_g^2 \rangle^{3/2}$, this transition corresponds to approximately $0.1\rho = 1.5c^*$ for N = 200 and $0.04\rho = 0.9c^*$ for N = 400. For N = 400 the diffusion coefficient of the rings at $\phi_{\text{linear}} = 0.5$ is reduced by a factor of about 75 compared to the pure ring melt. While the linear chains clearly restrict the motion of the rings, the motion of the linear chains for both values of N is largely independent of the blend et composition, which is consistent with early experimental results [33].

Linear chains have free ends and undergo reptation independently of whether the surrounding chains are rings or 85 linear, and accordingly their diffusion is found to be independent of ϕ_{linear} . Rings in a pure melt do not reptate 86 like linear chains. As linear chains are added to the ring melt, the rings become threaded and the nature of their 87 motion changes. A threaded ring can only diffuse through the release of threads. For a one-thread situation Mills 88 et al. [34] have shown that the diffusion coefficient of the ring is $D \sim N_{\text{ring}}^{-1} N_{\text{linear}}^{-1}$. At high fractions of linear chains the rings become multiply-threaded and their diffusion is severely hindered. In this regime the motion of a ring 89 90 monomer is coupled to the motion of surrounding linear chains. This implies Rouse dynamics for the ring with a 91 monomer relaxation time governed by the reptation relaxation of the linear chains, leading to a relaxation time scaling 92 of $N_{\rm ring}^2 N_{\rm linear}^3$. This argument is due to Graessley [35] and predicts $D \sim N_{\rm ring}^{-1} N_{\rm linear}^{-3}$. 93

The zero-shear viscosity computed as $\eta_0 = \int_0^\infty G(t)dt$ is shown as a function of ϕ_{linear} in Fig. 2(c). A striking result is the clear indication that the smallest concentration at which linear contaminants alter the viscosity of a ring melt considerably (about 10%) for the chain lengths considered here is $\phi_{\text{linear}} \approx 1/100$ or $c^*/5$ with a strong increase around c^* . This threshold concentration is roughly consistent with the change in D for the rings. We have confirmed our values of η_0 by conducting non-equilibrium MD simulations [36] where simple steady shear is imposed. For these

FIG. 2. (a) Mean-square gyration radii, (b) diffusion coefficients and (c) zero-shear viscosity versus ϕ_{linear} . The overlap concentration of linear chains, c^* , is indicated for the two values of N. For the rings with N = 200 and 400, $\langle R_g^2 \rangle_0 = 30.8$ and $52.9 \sigma^2$, respectively, while for the linear chains $\langle R_g^2 \rangle_0 = 88.9$ and $180.8 \sigma^2$. Note that the horizontal axis is interrupted. Lines are drawn as a guide for the eye.

⁹⁹ simulations a Nosé-Hoover thermostat [30, 36] with a relaxation time of 10 τ was used. Note that the thermal velocity is much larger than the largest velocity difference imposed by the shear. As shown in Fig. 3 for N = 400, when $\eta(\dot{\gamma})$ 100 ¹⁰¹ is extrapolated to $\dot{\gamma} \rightarrow 0$ the agreement with η_0 is very good [37]. Similar agreement is found for N = 200. For both values of N the viscosity at $\phi_{\text{linear}} = 0.5$ is larger than the viscosity at all other concentrations investigated. For the 102 simulated blends with 14.3 entanglements per chain we find $\eta(\phi_{\text{linear}} = 0.5)/\eta_0(\phi_{\text{linear}} = 1) \gtrsim 1.8$, where η of the 103 blend is taken from the non-equilibrium MD simulations (cf. Fig. 3) which gives a value that is still increasing slightly. 104 These findings are in good agreement with the experimental results of Roovers [38] who showed for ring/linear blends 105 of polybutadiene with approximately 15.3 entanglements per chain that the maximum in η_0 occurs at $\phi_{\text{linear}} = 0.6$ 106 and $\eta_0(\phi_{\text{linear}} \approx 0.5)/\eta_0(\phi_{\text{linear}} = 1) \approx 2.2$. The viscosity results in Fig. 2(c) provide a direct macroscopic indication 107 of the concentration of linear contaminants in experimental samples. As pointed out by Kapnistos et al. [8], the data 108 also suggest how the viscosity of a linear melt may be tuned by adding ring polymers. 109

To quantify the extent of threading, a primitive path analysis [13, 14] was conducted where the end monomers of 110 the linear chains were fixed and the rings were allowed to relax freely. This procedure causes the linear chains to be 111 pulled taut while the rings shrink towards their center with unthreaded rings collapsing to points. The time scale for 112 the primitive path procedure is $10^3 \tau$ which satisfies the condition of being equal to or faster than $\tau_e = 3200 \tau$, the 113 Rouse time of a linear chain of N_e . Averaging over 10–20 configurations incremented by $2 \times 10^6 \tau$, with N = 200 the 114 percentage of unthreaded rings for $\phi_{\text{linear}} \approx 0.03, 0.12, 0.25, 0.96$ is 80.0, 30.3, 11.7, 0.0%, respectively. For N = 400115 with $\phi_{\text{linear}} \approx 0.015, 0.03, 0.12, 0.5$ we find 86.0, 59.0, 7.0, 0.0%, respectively. Fig. 4(a) shows a final configuration $_{117}$ for $\phi_{\text{linear}} \approx 0.015$ where the vast majority of rings are found to be unthreaded. The sensitivity of a ring melt to ¹¹⁸ linear contaminants is demonstrated by the fact that the viscosity of this system is already 1.4 times larger than the ¹¹⁹ pure ring melt value. Fig. 4(b) shows a final configuration for $\phi_{\text{linear}} = 0.5$ where a selected ring and the polymers it

FIG. 3. Viscosity versus shear rate, $\dot{\gamma}$, for N = 400 obtained from non-equilibrium MD simulations [36]. Zero-shear viscosities obtained from the equilibrium simulations are shown on the far left. Note that the horizontal scale is interrupted. Inset: Ratio of pure linear to pure ring melt viscosity versus number of entanglements per chain for the simulated systems and the experimental data of Ref. [8, 39].

FIG. 4. Final configurations from a primitive path analysis for N = 400. (a) $\phi_{\text{linear}} = 3/203 \approx 0.015$ and all three linear chains (blue) are shown as well as only the rings which did not collapse to points. At this low concentration of linear chains on average 86% of the rings are found to be unthreaded. (b) $\phi_{\text{linear}} = 113/226 = 0.5$ and a selected ring (red) is shown along with the rings (green) and linear chains (blue) which it is either threaded by or entangled with. For clarity all other chains are not shown.

¹²⁰ is entangled with are shown. Given the large number of entanglements at this composition, the dramatic decrease in ¹²¹ the diffusivity of the rings and the increase in the blend viscosity in comparison to the pure ring melt value are easily ¹²² understood.

The present work provides a complete scan of compositions of two different ring polymer/linear polymer melts 123 for dynamical quantities such as viscosity and chain diffusion. One striking result is that the linear contaminants 124 start significantly affecting the ring melt viscosity at a concentration well below their overlap concentration. This 125 simulation result is in perfect qualitative agreement with the experimental observation of Ref. [8]: according to both 126 simulation and experiment, there is clearly an effect below the overlap concentration. However, quantitatively we 127 detect the onset of a viscosity change (10% increase for rings and linear chains with $N/N_e \approx 10$) at $\phi_{\text{linear}} \approx 0.01$, 128 while Kapnistos et al. [8] reported a 2-fold viscosity increase in comparison to the "pure as currently possible rings" 129 at a much smaller concentration of $\phi_{\text{linear}} = 0.0007$. To provide an intuitive picture of these concentrations one can 130 estimate what would be the typical distances between chains. For $\phi_{\text{linear}} = 0.0007$ the typical distance between linear chains $(\rho/N)^{-1/3}$ would be about 66 σ for N = 200 and 83 σ for N = 400. The diameter $(2 \langle R_a^2 \rangle^{1/2})$ of the rings 132 is about 11 σ and 15 σ and of the linear chains about 19 σ and 27 σ , respectively. Thus two linear chains would be separated on average by about 4–5 ring diameters for N = 200, or by 4 ring diameters for N = 400. And, importantly, 134 these rings would not be entangled since they are unconcatenated and have no free ends. At $\phi_{\text{linear}} = 0.01$, where our 135 data indicate a 10% viscosity increase, distances and chain extensions are all rather similar. While the two works differ 136 with respect to the onset concentration, fair agreement is found for the ratio of the pure linear melt viscosity to that 138 of the (almost) pure ring melt as shown in the inset of Fig. 3 [8, 39]. Additionally, the simulation and experimental ¹³⁹ results for the dependence of $\eta_{0,\text{linear}}/\eta_{0,\text{rings}}$ on N/N_e are consistent not only with one another, but also with the ¹⁴⁰ theoretical framework of Ref. [8] and our previous result [12] which suggest a power law dependence with power close

$\mathbf{6}$

141 to 2.

This work significantly benefited from discussions with R. Everaers and M. Rubinstein. We also thank M. Rubinstein for additional data [39] concerning Ref. [8]. KK acknowledges the hospitality of the Center for Soft Matter Research at NYU where part of this work was done. Funding was provided in part by the Multiscale Materials Modeling (MMM) initiative of the Max Planck Society. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department tee of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

- ¹⁴⁹ * Electronic address: kremer@mpip-mainz.mpg.de
- ¹⁵⁰ [1] P. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
- 151 [2] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).
- ¹⁵² [3] T. Cremer and C. Cremer, Nature Reviews Genetics 2, 292 (2001).
- ¹⁵³ [4] A. Rosa and R. Everaers, PLoS Computational Biology 4, e1000153 (2008).
- ¹⁵⁴ [5] G. Hild, C. Strazielle, and P. Rempp, Eur. Polym. J. **19**, 1983 (1983).
- ¹⁵⁵ [6] J. Roovers and P. M. Toporowski, Macromolecules **16**, 843 (1983).
- [7] G. B. McKenna, G. Hadziioannou, P. Lutz, G. Hild, C. Strazielle, C. Straupe, and P. Rempp, Macromolecules 20, 498 (1987).
- [8] M. Kapnistos, M. Lang, D. Vlassopoulos, W. Pyckhou-Hintzen, D. Richter, D. Cho, T. Chang, and M. Rubinstein, Nature
 Materials 7, 997 (2008).
- ¹⁶⁰ [9] H. Pasch and B. Trathnigg, <u>HPLC of Polymers</u> (Springer, 1997).
- ¹⁶¹ [10] H. C. Lee, H. Lee, W. Lee, T. Chang, and J. Roovers, Macromolecules **33**, 8119 (2000).
- ¹⁶² [11] S. T. Milner and J. D. Newhall, Phys. Rev. Lett. **105**, 208302 (2010).
- 163 [12] J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204905 (2011).
- 164 [13] R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg, A. Sivasubramanian, and K. Kremer, Science 303, 823 (2004).
- 165 [14] S. K. Sukumaran, G. S. Grest, K. Kremer, and R. Everaers, J. Polymer Science: Part B: Polymer Physics 43, 917 (2005).
- ¹⁶⁶ [15] M. K. R. S. Hoy, K. Foteinopoulou, Phys. Rev. E 80, 031803 (2009).
- 167 [16] R. Everaers, cond-mat.soft, arxiv.org/abs/1111.4895v1 (2011).
- ¹⁶⁸ [17] B. Iyer, A. K. Lee, and S. Shanbhag, Macromolecules 40, 5995 (2007).
- ¹⁶⁹ [18] G. Subramanian and S. Shanbhag, Phys. Rev. E 77, 011801 (2008).
- ¹⁷⁰ [19] L. J. Fetters, D. J. Lohse, and S. T. Milner, Macromolecules **32**, 6847 (1999).
- 171 [20] Cates, M.E. and Deutsch, J.M., Journal de Physique (France) 47, 2121 (1986).
- 172 [21] M. Müller, J. P. Wittmer, and M. E. Cates, Phys. Rev. E 53, 5063 (1996).
- 173 [22] S. Brown and G. Szamel, J. Chem. Phys. 109, 6184 (1998).
- 174 [23] V. Arrighi, S. Gagliardi, A. C. Dagger, J. A. Semlyen, J. S. Higgins, and M. J. Shenton, Macromolecules 37, 8057 (2004).
- 175 [24] T. Vettorel, A. Y. Grosberg, and K. Kremer, Phys. Biol. 6, 025013 (2009).
- 176 [25] J. Suzuki, A. Takano, T. Deguchi, and Y. Matsushita, J. Chem. Phys. 131, 144902 (2009).
- 177 [26] J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204904 (2011).
- 176 [27] K. Hur, C. Jeong, R. G. Winkler, N. Lacevic, R. H. Gee, and D. Y. Yoon, Macromolecules 44, 2311 (2011).
- ¹⁷⁹ [28] The data of Hur et al. [27] does not fall on the curve in this regime because polyethylene conformations are too extended as also known from linear chains.
- ¹⁸¹ [29] K. Kremer and G. S. Grest, J. Chem. Phys. **92**, 5057 (1990).
- 182 [30] S. J. Plimpton, J. Comp. Phys. 117, 1 (1995).
- 183 [31] N. T. Moore and A. Y. Grosberg, Phys. Rev. E 72, 061803 (2005).
- 184 [32] Y.-B. Yang, Z.-Y. Sun, C.-L. Fu, L.-J. An, and Z.-G. Wang, J. Chem. Phys. 133, 064901 (2010).
- ¹⁸⁵ [33] S. F. Tead, E. J. Kramer, G. Hadziioannou, M. Antonietti, H. Sillescu, P. Lutz, and C. Strazielle, Macromolecules 25, ¹⁸⁶ 3942 (1992).
- ¹⁸⁷ [34] P. J. Mills, J. W. Mayer, E. J. Kramer, G. Hadziioannou, P. Lutz, C. Strazielle, P. Rempp, and A. J. Kovacs, Macromolecules **20**, 513 (1987).
- 189 [35] W. W. Graessley, Adv. Polym. Sci. 47, 67 (1982).
- ¹⁹⁰ [36] M. E. Tuckerman, C. J. Mundy, S. Balasubramanian, and M. L. Klein, J. Chem. Phys. **106**, 5615 (1997).
- ¹⁹¹ [37] In Fig. 3, η_0 is not given for the $\phi_{\text{linear}} = 0.5$ system because *D* for the rings is very small and an extremely long simulation ¹⁹² time would be required to resolve G(t).
- ¹⁹³ [38] J. Roovers, Macromolecules **21**, 1517 (1988).
- ¹⁹⁴ [39] M. Rubinstein, (2011), private communication.