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Ring polymers remain a major challenge to our current understanding of polymer dynamics.
Experimental results are difficult to interpret because of the uncertainty in the purity and dispersity
of the sample. Using both equilibrium and non-equilibrium molecular dynamics simulations we have
systematically investigated the structure, dynamics and rheology of perfectly controlled ring/linear
polymer blends with chains of such length and flexibility that the number of entanglements is up
to about 14 per chain, which is comparable to experimental systems examined in the literature.
The smallest concentration at which linear contaminants increase the zero-shear viscosity of a ring
polymer melt of these chain lengths by 10% is approximately one-fifth of their overlap concentration.
When the two architectures are present in equal amounts the viscosity of the blend is approximately
twice as large as that of the pure linear melt. At this concentration the diffusion coefficient of
the rings is found to decrease dramatically, while the static and dynamic properties of the linear
polymers are mostly unaffected. Our results are supported by a primitive path analysis.

PACS numbers: 83.80.Tc, 83.10.Rs, 83.80.Sg7
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While much has been learned about linear and branched polymers [1, 2], a comparable understanding of ring or8

cyclic polymers is lacking. Ring polymers, as they do not have free ends, represent the simplest model system where9

reptation is completely suppressed. Also, mitochondrial and plasmid DNA are usually cyclic, and melts of rings are10

considered highly relevant model systems to understand chromatin folding in the cell nucleus [3, 4]. This makes ring11

polymers perfect test cases for both fundamental polymer and bio physics.12

Early experimental studies on pure ring polymer melts gave inconsistent results most likely because the samples13

were contaminated with linear chains [5–7]. Also the existence of self-knots could not be controlled. More recently14

experiments have been conducted [8] based on new characterization and purification techniques [9, 10]. For melts of15

nonconcatenated polystyrene rings with molecular weight (MW) to entanglement MW ratios of 9.2 and 11.3, where16

the entanglement MW is 17500 g/mol, Kapnistos et al. [8] reported that the stress relaxation modulus, G(t), follows17

a power-law decay with no sign of a rubbery plateau. The authors used scaling arguments to show G(t) ∼ t−2/5,18

a result in agreement with the data up to the terminal time. Milner and Newhall [11] introduced the “diffusion of19

centrality” concept and mapped the ring conformations to annealed tree-like structures and found a similar prediction20

of G(t) ∼ t−1/2. Kapnistos et al. [8] also reported that the smallest concentration of linear contaminants that affects21

the rheology of the ring melt is almost two decades below the overlap concentration of the linear chains. Despite22

the synthetic effort, the characterization and control of the experimental systems including polydispersity, knotting,23

concatenation and linear contaminants is far from perfect. Because of this, computer simulations of optimized models,24

which by now easily reach effective experimental molecular weights, are perfect to test concepts for precisely defined25

systems under well-controlled conditions. Our own recent simulations [12] of a melt of nonconcatenated and unknotted26

ring polymers have shown that G(t) ∼ t−α with α decreasing from 0.5 to 0.45 with increasing chain length.27

Here we employ molecular dynamics (MD) simulations to study the structure, dynamics and rheology of ring/linear28

polymer blends of equal chain length. We consider two lengths of N = 200 and 400 monomers per chain. For the29

model used here the entanglement length of a melt of linear polymers is Ne = 28 ± 1 [13] which corresponds to30

N/Ne ≈ 7.1 and 14.3 entanglements per chain. For this a bond bending potential along the chains is introduced,31

leading to a Kuhn length of lk ∼= 2.79 σ [13], σ being the unit of length. Ne is determined by a primitive path32

analysis [13, 14], which is known to yield Ne values which properly reproduce rheological data [15, 16]. Our systems33

are perfectly monodisperse, unknotted and nonconcatenated, allowing for a rather stringent test of currently discussed34

concepts. Previous simulations of such mixtures have only considered short chain lengths and did not measure any35

rheological properties [17, 18]. While different polymer melts can be related to each other by the N/Ne ratio, we note36

that for the present comparison to experiment [8] also the ratio of the Kuhn length and the packing length lk/p are37

not that different, namely 6.5 for our simulation model [13] and 3.8 for a polystyrene melt [19].38

The topological constraint that a ring must remain unknotted and nonconcatenated leads to nontrivial behavior39

even for the static properties of a melt or concentrated solution of rings. Rings are found to be approximately Gaussian40

at short chain lengths, while for larger lengths the nonconcatenation dominates the conformational statistics. Cates41

and Deutsch [20] conjectured that the exponent in the mean-square gyration radius,
〈
R2
g

〉
∼ N2ν , should be less than42

ν = 1/2 and greater than 1/3 and used a simple free energy argument to arrive at a value of 2/5, which was later43

supported by simulation [21, 22] and experiment [23] for systems with less than 13 entanglements per chain. However,44

for larger rings a scaling of
〈
R2
g

〉
∼ N2/3 has been shown [24–26]. Altogether we expect a smooth crossover from a45

Gaussian regime (ν = 1/2) via a regime with ν = 2/5 for rings of length of a few Ne to the “crumpled globule” regime46

(ν = 1/3) for rings significantly exceeding Ne. The universal scaling behavior of
〈
R2
g(N)

〉
for a pure ring polymer47

melt is demonstrated in Fig. 1 using results from many different simulations. Only short-chain atomistic data for48

polyethylene [27] deviate from the curve [28]. From N/Ne ≈ 15 the onset of the collapsed regime is clearly observed49

in agreement with the predictions of Vettorel et al. [24].50

We present new MD simulations using the same semiflexible bead-spring model [29] as in our previous work [12,51

26]. The length, time and energy scales are σ, τ and ε, respectively. The production runs were carried out using52

LAMMPS [30] with a time step of 0.01 τ and an overall monomer density of ρ = 0.85/σ3. The largest simulations53

ran in parallel on 2048 Blue Gene/P cores. Systems studied range from φlinear ≡ Mlinear/(Mlinear + Mrings) = 0 to54

1, where M is the number of chains of a given architecture. For N = 200 the total number of chains ranged from55

200–260 while for N = 400 the systems were composed of 200–400 chains. The initial configuration for each blend56

system with φlinear ≤ 0.115 was created by adding linear chains at random locations within an equilibrated ring melt57

configuration. Chains which most closely matched a Gaussian chain were taken from an equilibrated pure linear melt.58

For the cases with φlinear ≈ 0.25 and 0.5 the appropriate number of rings were randomly removed while for the case59

with Mrings = 10 and Mlinear = 250, rings were taken from an equilibrated pure ring melt and inserted into a linear60

melt making sure that the nonconcatenation constraint was observed. Because these insertions lead to monomers61

being very nearly overlapping, a short simulation was carried out for 100 τ while limiting the bead displacement at62

every step to 0.001 σ. During this short run the box size was increased linearly so as to give the correct density at the63
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FIG. 1. Universal behavior of
〈
R2

g(N)
〉

for pure ring polymer melts. The data were obtained using different simulation methods
and different models. The reference line with slope 1/5 corresponds to the Gaussian regime while that with a slope of −2/15
corresponds to the collapsed regime. Representative conformations from Ref. [26] are shown.

final step. This procedure produces non-equilibrated starting configurations. Long MD simulations of 4 − 8 × 107 τ64

were performed to equilibrate each system where each architecture moved at least twice its root-mean-square gyration65

radius and in some cases more than 20 times this value.66

Results for the mean-square gyration radius for the rings and linear chains normalized by their respective pure67

melt values are shown in Fig. 2(a). For the rings with N = 200,
〈
R2
g

〉
is found to increase with increasing linear68

concentration. At φlinear ≈ 0.96,
〈
R2
g

〉
= 45.3± 2.2 σ2, which is 1.5 times larger than the value of the pure ring melt.69

For a Gaussian ring
〈
R2
g

〉
= Nlkl/12 = 45.2 σ2, where l is the average bond length. For the rings with φlinear ≈ 0.9670

the static structure function scales as S(q) ∼ q−2 for 2π/〈R2
g〉1/2 < q < 2π/lk, even though the rings cannot sample71

the whole conformational space of a Gaussian ring [31]. For the N = 400 systems a similar swelling behavior is found72

for the rings. The linear chains are found to be Gaussian for all combinations of N and φlinear. At small values73

of φlinear the rings are partially collapsed as discussed above. As the fraction of linear chains increases, the size of74

the rings grows because it is entropically favorable for the linear chains to thread the rings. At infinite dilution the75

nonconcatenation constraint vanishes and the rings are found to be multiply-threaded and nearly Gaussian [17, 31, 32].76

The diffusion coefficients, D, which are determined by the long-time behavior of the mean-square displacement of77

the center-of-mass of the chains, are shown in Fig. 2(b). The diffusivity of the rings for both values of N is found78

to steadily decrease with increasing fraction of linear chains until a dramatic decrease is observed. With the overlap79

concentration of linear chains being c∗ = φ∗linearρ = N/(4/3)π
〈
R2
g

〉3/2
, this transition corresponds to approximately80

0.1ρ = 1.5c∗ for N = 200 and 0.04ρ = 0.9c∗ for N = 400. For N = 400 the diffusion coefficient of the rings at81

φlinear = 0.5 is reduced by a factor of about 75 compared to the pure ring melt. While the linear chains clearly restrict82

the motion of the rings, the motion of the linear chains for both values of N is largely independent of the blend83

composition, which is consistent with early experimental results [33].84

Linear chains have free ends and undergo reptation independently of whether the surrounding chains are rings or85

linear, and accordingly their diffusion is found to be independent of φlinear. Rings in a pure melt do not reptate86

like linear chains. As linear chains are added to the ring melt, the rings become threaded and the nature of their87

motion changes. A threaded ring can only diffuse through the release of threads. For a one-thread situation Mills88

et al. [34] have shown that the diffusion coefficient of the ring is D ∼ N−1ringN
−1
linear. At high fractions of linear chains89

the rings become multiply-threaded and their diffusion is severely hindered. In this regime the motion of a ring90

monomer is coupled to the motion of surrounding linear chains. This implies Rouse dynamics for the ring with a91

monomer relaxation time governed by the reptation relaxation of the linear chains, leading to a relaxation time scaling92

of N2
ringN

3
linear. This argument is due to Graessley [35] and predicts D ∼ N−1ringN

−3
linear.93

The zero-shear viscosity computed as η0 =
∫∞
0
G(t)dt is shown as a function of φlinear in Fig. 2(c). A striking94

result is the clear indication that the smallest concentration at which linear contaminants alter the viscosity of a ring95

melt considerably (about 10%) for the chain lengths considered here is φlinear ≈ 1/100 or c∗/5 with a strong increase96

around c∗. This threshold concentration is roughly consistent with the change in D for the rings. We have confirmed97

our values of η0 by conducting non-equilibrium MD simulations [36] where simple steady shear is imposed. For these98
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FIG. 2. (a) Mean-square gyration radii, (b) diffusion coefficients and (c) zero-shear viscosity versus φlinear. The overlap
concentration of linear chains, c∗, is indicated for the two values of N . For the rings with N = 200 and 400,
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0

= 30.8 and

52.9 σ2, respectively, while for the linear chains
〈
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g

〉
0

= 88.9 and 180.8 σ2. Note that the horizontal axis is interrupted. Lines
are drawn as a guide for the eye.

simulations a Nosé-Hoover thermostat [30, 36] with a relaxation time of 10 τ was used. Note that the thermal velocity99

is much larger than the largest velocity difference imposed by the shear. As shown in Fig. 3 for N = 400, when η(γ̇)100

is extrapolated to γ̇ → 0 the agreement with η0 is very good [37]. Similar agreement is found for N = 200. For both101

values of N the viscosity at φlinear = 0.5 is larger than the viscosity at all other concentrations investigated. For the102

simulated blends with 14.3 entanglements per chain we find η(φlinear = 0.5)/η0(φlinear = 1) ' 1.8, where η of the103

blend is taken from the non-equilibrium MD simulations (cf. Fig. 3) which gives a value that is still increasing slightly.104

These findings are in good agreement with the experimental results of Roovers [38] who showed for ring/linear blends105

of polybutadiene with approximately 15.3 entanglements per chain that the maximum in η0 occurs at φlinear = 0.6106

and η0(φlinear ≈ 0.5)/η0(φlinear = 1) ≈ 2.2. The viscosity results in Fig. 2(c) provide a direct macroscopic indication107

of the concentration of linear contaminants in experimental samples. As pointed out by Kapnistos et al. [8], the data108

also suggest how the viscosity of a linear melt may be tuned by adding ring polymers.109

To quantify the extent of threading, a primitive path analysis [13, 14] was conducted where the end monomers of110

the linear chains were fixed and the rings were allowed to relax freely. This procedure causes the linear chains to be111

pulled taut while the rings shrink towards their center with unthreaded rings collapsing to points. The time scale for112

the primitive path procedure is 103 τ which satisfies the condition of being equal to or faster than τe = 3200 τ , the113

Rouse time of a linear chain of Ne. Averaging over 10–20 configurations incremented by 2× 106 τ , with N = 200 the114

percentage of unthreaded rings for φlinear ≈ 0.03, 0.12, 0.25, 0.96 is 80.0, 30.3, 11.7, 0.0%, respectively. For N = 400115

with φlinear ≈ 0.015, 0.03, 0.12, 0.5 we find 86.0, 59.0, 7.0, 0.0%, respectively. Fig. 4(a) shows a final configuration116

for φlinear ≈ 0.015 where the vast majority of rings are found to be unthreaded. The sensitivity of a ring melt to117

linear contaminants is demonstrated by the fact that the viscosity of this system is already 1.4 times larger than the118

pure ring melt value. Fig. 4(b) shows a final configuration for φlinear = 0.5 where a selected ring and the polymers it119



5

γ̇ → 0 10−7 10−6 10−5 10−4 10−3 10−2

γ̇τ

100

101

102

103

104

105

η
σ

3
/τ
ε

φlinear = 0

φlinear ≈ 0.12

φlinear = 0.5

φlinear = 1

Sim.

Exp.

101

N/Ne

101

102

η
0
,l

in
e
a
r

η
0
,r

in
g
s

FIG. 3. Viscosity versus shear rate, γ̇, for N = 400 obtained from non-equilibrium MD simulations [36]. Zero-shear viscosities
obtained from the equilibrium simulations are shown on the far left. Note that the horizontal scale is interrupted. Inset:
Ratio of pure linear to pure ring melt viscosity versus number of entanglements per chain for the simulated systems and the
experimental data of Ref. [8, 39].

FIG. 4. Final configurations from a primitive path analysis for N = 400. (a) φlinear = 3/203 ≈ 0.015 and all three linear chains
(blue) are shown as well as only the rings which did not collapse to points. At this low concentration of linear chains on average
86% of the rings are found to be unthreaded. (b) φlinear = 113/226 = 0.5 and a selected ring (red) is shown along with the rings
(green) and linear chains (blue) which it is either threaded by or entangled with. For clarity all other chains are not shown.

is entangled with are shown. Given the large number of entanglements at this composition, the dramatic decrease in120

the diffusivity of the rings and the increase in the blend viscosity in comparison to the pure ring melt value are easily121

understood.122

The present work provides a complete scan of compositions of two different ring polymer/linear polymer melts123

for dynamical quantities such as viscosity and chain diffusion. One striking result is that the linear contaminants124

start significantly affecting the ring melt viscosity at a concentration well below their overlap concentration. This125

simulation result is in perfect qualitative agreement with the experimental observation of Ref. [8]: according to both126

simulation and experiment, there is clearly an effect below the overlap concentration. However, quantitatively we127

detect the onset of a viscosity change (10% increase for rings and linear chains with N/Ne ≈ 10) at φlinear ≈ 0.01,128

while Kapnistos et al. [8] reported a 2-fold viscosity increase in comparison to the “pure as currently possible rings”129

at a much smaller concentration of φlinear = 0.0007. To provide an intuitive picture of these concentrations one can130

estimate what would be the typical distances between chains. For φlinear = 0.0007 the typical distance between linear131

chains (ρ/N)−1/3 would be about 66 σ for N = 200 and 83 σ for N = 400. The diameter (2
〈
R2
g

〉1/2
) of the rings132

is about 11 σ and 15 σ and of the linear chains about 19 σ and 27 σ, respectively. Thus two linear chains would be133

separated on average by about 4–5 ring diameters for N = 200, or by 4 ring diameters for N = 400. And, importantly,134

these rings would not be entangled since they are unconcatenated and have no free ends. At φlinear = 0.01, where our135

data indicate a 10% viscosity increase, distances and chain extensions are all rather similar. While the two works differ136

with respect to the onset concentration, fair agreement is found for the ratio of the pure linear melt viscosity to that137

of the (almost) pure ring melt as shown in the inset of Fig. 3 [8, 39]. Additionally, the simulation and experimental138

results for the dependence of η0,linear/η0,rings on N/Ne are consistent not only with one another, but also with the139

theoretical framework of Ref. [8] and our previous result [12] which suggest a power law dependence with power close140



6

to 2.141

This work significantly benefited from discussions with R. Everaers and M. Rubinstein. We also thank M. Rubinstein142

for additional data [39] concerning Ref. [8]. KK acknowledges the hospitality of the Center for Soft Matter Research at143

NYU where part of this work was done. Funding was provided in part by the Multiscale Materials Modeling (MMM)144

initiative of the Max Planck Society. This work is supported by the Laboratory Directed Research and Development145

program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and146

operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department147

of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.148



7

∗ Electronic address: kremer@mpip-mainz.mpg.de149

[1] P. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).150

[2] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).151

[3] T. Cremer and C. Cremer, Nature Reviews Genetics 2, 292 (2001).152

[4] A. Rosa and R. Everaers, PLoS Computational Biology 4, e1000153 (2008).153

[5] G. Hild, C. Strazielle, and P. Rempp, Eur. Polym. J. 19, 1983 (1983).154

[6] J. Roovers and P. M. Toporowski, Macromolecules 16, 843 (1983).155

[7] G. B. McKenna, G. Hadziioannou, P. Lutz, G. Hild, C. Strazielle, C. Straupe, and P. Rempp, Macromolecules 20, 498156

(1987).157

[8] M. Kapnistos, M. Lang, D. Vlassopoulos, W. Pyckhou-Hintzen, D. Richter, D. Cho, T. Chang, and M. Rubinstein, Nature158

Materials 7, 997 (2008).159

[9] H. Pasch and B. Trathnigg, HPLC of Polymers (Springer, 1997).160

[10] H. C. Lee, H. Lee, W. Lee, T. Chang, and J. Roovers, Macromolecules 33, 8119 (2000).161

[11] S. T. Milner and J. D. Newhall, Phys. Rev. Lett. 105, 208302 (2010).162

[12] J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204905 (2011).163

[13] R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg, A. Sivasubramanian, and K. Kremer, Science 303, 823 (2004).164

[14] S. K. Sukumaran, G. S. Grest, K. Kremer, and R. Everaers, J. Polymer Science: Part B: Polymer Physics 43, 917 (2005).165

[15] M. K. R. S. Hoy, K. Foteinopoulou, Phys. Rev. E 80, 031803 (2009).166

[16] R. Everaers, cond-mat.soft , arxiv.org/abs/1111.4895v1 (2011).167

[17] B. Iyer, A. K. Lee, and S. Shanbhag, Macromolecules 40, 5995 (2007).168

[18] G. Subramanian and S. Shanbhag, Phys. Rev. E 77, 011801 (2008).169

[19] L. J. Fetters, D. J. Lohse, and S. T. Milner, Macromolecules 32, 6847 (1999).170

[20] Cates, M.E. and Deutsch, J.M., Journal de Physique (France) 47, 2121 (1986).171

[21] M. Müller, J. P. Wittmer, and M. E. Cates, Phys. Rev. E 53, 5063 (1996).172

[22] S. Brown and G. Szamel, J. Chem. Phys. 109, 6184 (1998).173

[23] V. Arrighi, S. Gagliardi, A. C. Dagger, J. A. Semlyen, J. S. Higgins, and M. J. Shenton, Macromolecules 37, 8057 (2004).174

[24] T. Vettorel, A. Y. Grosberg, and K. Kremer, Phys. Biol. 6, 025013 (2009).175

[25] J. Suzuki, A. Takano, T. Deguchi, and Y. Matsushita, J. Chem. Phys. 131, 144902 (2009).176

[26] J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204904 (2011).177

[27] K. Hur, C. Jeong, R. G. Winkler, N. Lacevic, R. H. Gee, and D. Y. Yoon, Macromolecules 44, 2311 (2011).178

[28] The data of Hur et al. [27] does not fall on the curve in this regime because polyethylene conformations are too extended179

as also known from linear chains.180

[29] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).181

[30] S. J. Plimpton, J. Comp. Phys. 117, 1 (1995).182

[31] N. T. Moore and A. Y. Grosberg, Phys. Rev. E 72, 061803 (2005).183

[32] Y.-B. Yang, Z.-Y. Sun, C.-L. Fu, L.-J. An, and Z.-G. Wang, J. Chem. Phys. 133, 064901 (2010).184

[33] S. F. Tead, E. J. Kramer, G. Hadziioannou, M. Antonietti, H. Sillescu, P. Lutz, and C. Strazielle, Macromolecules 25,185

3942 (1992).186

[34] P. J. Mills, J. W. Mayer, E. J. Kramer, G. Hadziioannou, P. Lutz, C. Strazielle, P. Rempp, and A. J. Kovacs, Macro-187

molecules 20, 513 (1987).188

[35] W. W. Graessley, Adv. Polym. Sci. 47, 67 (1982).189

[36] M. E. Tuckerman, C. J. Mundy, S. Balasubramanian, and M. L. Klein, J. Chem. Phys. 106, 5615 (1997).190

[37] In Fig. 3, η0 is not given for the φlinear = 0.5 system because D for the rings is very small and an extremely long simulation191

time would be required to resolve G(t).192

[38] J. Roovers, Macromolecules 21, 1517 (1988).193

[39] M. Rubinstein, (2011), private communication.194


