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Chemotaxis driven instability of a confined bacterial suspension

T. V. Kasyap and Donald L. Koch
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853

A suspension of bacteria in a thin channel or film subject to a gradient in the concentration
of a chemoattractant, will develop, in the absence of an imposed fluid flow, a steady bacteria
concentration field that depends exponentially on cross-stream position. Above a critical bacteria
concentration, this quiescent base state is unstable to a steady convective motion driven by the
active stresses induced by the bacteria’s swimming. Unlike previously identified long wavelength
instabilities of active fluids, this instability results from coupling of the bacteria concentration field
with the disturbance flow.

PACS numbers: 87.17.Jj, 87.18.Hf, 47.57.E-, 47.63.Gd

Observations that suspensions of swimming bacteria
with no imposed stresses or chemical gradients exhibit
collective motions on length scales large compared with
an individual cell have inspired simulations of hydrody-
namically interacting Stokesian swimmers and contin-
uum theories for bacteria suspensions [1]. The continuum
theories feature an active stress resulting from the force
dipoles the cells exert as they swim. The homogeneous,
quiescent state of an unbounded suspension governed by
these equations has been shown to be unstable to per-
turbations in bacteria orientation distribution that cou-
ple with the fluid shearing induced by the active stresses
[1–4]. Since the purpose of bacterial motility is to allow
cells to respond to chemical cues in their environment, it
is of interest to explore how bacterial collective motion
may be altered by chemical gradients. In this Letter,
we show that bacteria suspensions exhibit a new type of
instability (illustrated in Fig. 1) when the cells’ swim-
ming motion is biased due to a gradient of a chemical
attractant in a confined channel or liquid film. The new
instability involves coupling of active stress induced fluid
convection with the bacteria concentration field.

Two recent experimental studies suggest that bacte-
ria do exhibit enhanced convection in the presence of
chemoattractant gradients. Kim and Breuer [5] observed
a significant increase in the hydrodynamically induced
diffusivity of a fluorescent molecule in a suspension of
wild type E. Coli as the concentration gradient of an
attractant was increased. Sokolov et al. [6] studied the
dynamics of thin films of aqueous suspensions of aero-
bic B. Subtilis cells. As they increased the thickness of
these films, they observed a transition from spatially ho-
mogeneous, coherent motion in the plane of the film to
a strongly convective, spatially inhomogeneous three di-
mensional motion. The onset of convective motion coin-
cided with the development of cross-film gradients of oxy-
gen, which acts as an attractant for the cells. While grav-
itational forces due to cell concentration variations can
lead to “bio-convection” [7], the film thickness and asso-
ciated Rayleigh number in Sokolov et al.’s experiment [6]
was too small to admit such an instability. We suggest
instead that the motion was induced by an instability

associated with the active stress of chemotactic bacteria.

While chemical attractants are often consumed or pro-
duced by bacteria, the simplest setting in which to ex-
plore chemical effects on the motion of a bacteria sus-
pension is that illustrated in Fig. 1, where a linear gra-
dient is imposed across a channel of thickness H in the
z direction and infinite extent in the x direction with no
slip walls. Cheng et al. [8] have designed an apparatus
where a linear gradient of an attractant, such as Me-Asp
(α-methyl-DL-aspartate) that is not consumed by bacte-
ria [9] and has a diffusivity large compared with that of
the cells, can be established by the attractant diffusing
across a sealed micro-channel sandwiched between source
and sink channels.

In the absence of velocity and chemical gradients, bac-
teria such as E. Coli or B. Subtilis perform an unbiased
random walk comprised of intervals of persistent swim-
ming lasting about τ0 ≈ 1s punctuated by short intervals
of ‘tumbling’ [10]. The state of a dilute bacterial sus-
pension can be specified by the singlet probability den-

FIG. 1. Mechanism of the chemotaxis driven instability. In-
dividual bacteria align in the direction of the chemical gra-
dient leading to dipolar fluid velocity disturbances. At the
continuum level, the instability manifests itself through the
perturbed number density field represented by color contours
and the streamline pattern illustrated within the channel.
Brighter regions indicate higher bacteria concentrations. The
fluid motion acting on the base state number density profile
sweeps bacteria toward the region of high perturbed bacteria
concentration leading to growth of the perturbation.
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sity Ω(x,p, t) where p and x are the orientation and the
position of a bacterium [1, 3, 4]. Ω(x,p, t) satisfies a
Boltzmann-like equation with the tumbling of the bac-
terium being modelled as a Markov process [4]. On length
scales much larger than the persistence length Uτ0 where
U is the swimming speed of the bacteria, Ω(x,p, t) can
be decomposed into a number density field n(x, t) and
an orientation field f(p, t). In the absence of fluid flow,
the steady-state orientation distribution f(p) can be ob-
tained by equating the rate f(p)/τ at which cells tumble
away from orientations near p with the rate at which cells
tumble into the region near p. Assuming for simplicity
that pre- and post-tumble orientations are uncorrelated,
the latter rate is 1

4π

∫

f(p)/τdp [4]. In presence of a
chemoattractant gradient, the bacteria bias their random
walk by reducing τ−1 when moving up the gradient and
leaving it unaltered when swimming down the gradient
[10], so that τ−1 has been described by [11]:

τ−1 =

{

τ−1
0 exp(−ζp · g) if p · g > 0,

τ−1
0 if p · g ≤ 0,

(1)

where g = −ez is the unit vector parallel to the chemical
gradient, ζ = χUG, G is the magnitude of the gradient,
and χ is the sensitivity of bacteria to the attractant. Us-
ing the linearized form of Eq. (1) for weak chemotaxis,
ζ ≪ 1, the orientation field obtained by equating the
rates of direct and inverse events [12] is

f(p) =

{

1
4π [1 + (p · g− 1/4)ζ] +O(ζ2) if p · g > 0,
1
4π [1− ζ/4] +O(ζ2) if p · g ≤ 0,

(2)
The resulting mean orientation 〈p〉 = (1/6)ζg leads to
a mean bacterial velocity U0 = U〈p〉 parallel to the
chemoattractant gradient. Typically, the magnitude of
chemotactic drift velocity U0 = |U0| is about 10% of
the swimming speed [13], so that the theory with weak
chemotaxis (ζ ≪ 1) will be reasonably accurate. On time
and length scales larger than τ0 and Uτ0, the number den-
sity satisfies a conservation equation with a chemotactic
convective flux and a diffusive flux with the diffusivity
D = U2τ0/3 arising from the unbiased part of the run-
and-tumble motion [14]:

∂n

∂t
+∇ · [(U0 + u)n−D∇n] = 0. (3)

The fluid velocity u(x, t) and pressure p(x, t) fields sat-
isfy Stokes equations [1–4]

∇ · u = 0, (4)

−∇p+ µ∇2u+∇ · σB = 0, (5)

where the bacterial stress is given by σB =
−CµUL2

∫

Ω
[

pp− 1
3I
]

dp. Here µ is the viscosity of
the suspending fluid, L is the combined length of the
bacterial cell and propulsive flagellar bundle, and C is

the force-dipole a bacterium exerts non-dimensionalized
by µUL2. C is positive for swimmers whose propul-
sive mechanisms push the cells and negative for pullers.
The common bacterial species E. Coli and B. Subtilis

are pushers with C = 0.57 [4]. The anisotropic orienta-
tion distribution in Eq. (2) leads to an anisotropic bacte-
rial stress tensor σB(x, t) = n(x, t)S where the stresslet
S = −(C/16)µUL2ζ

[

gg− 1
3I
]

. Being a pusher, the bac-
terium exerts a pressure in the z direction (negative nor-
mal stress) and tension (positive normal stress) in the
x and y directions. Although the orientation field in
Eq. (2) changes after the onset of the instability due to
rotation of bacteria by fluid velocity gradients, one can
model the effects of this change on the bacterial stress
in terms of a modified viscosity for disturbances with
wavelengths larger than (nL2)−1 [4, 12]. This viscosity
is nearly isotropic when ζ ≪ 1 [12]. Since the effects
of such a modified viscosity on the stability of the sus-
pension have been analyzed previously, we focus instead
on the active normal stress difference induced directly by
the chemical gradient. In addition, we neglect the O(ζ2)
change in U0 due to shear induced cell rotation.

Eqs. (3), (4), and (5) admit a stationary base state so-
lution with no fluid flow and an exponential number den-

sity profile n0(z) =
〈n0〉Pe exp(−Pe z/H)

1−exp(−Pe) determined by the

balance of cross-channel chemotaxis and diffusion. Here
the angle brackets indicate an average over the channel
cross-section and Pe = U0H/D = 3( H

Uτ0
)(U0/U) is a

Peclet number measuring the strength of the chemotac-
tic drift. In the base state, the inhomogeneous bacterial
stress is balanced by the base state pressure p0 = Szzn0.

We will now study the stability of this stationary base
state to small perturbations of the bacteria number den-
sity and pressure fields, i.e., n = n0(z) + n′(x, z, t) and
p = p0(z) + p′(x, z, t) with n′ ≪ n0 and p′ ≪ p0 and
fluid velocity perturbations u′(x, z, t). We adopt a lu-
brication approximation in which the variations with re-
spect to x occur over a wavelength λ which is much larger
than the channel thickness H , i.e., ǫ = H/λ ≪ 1. Non-
dimensionalizing z with the channel thickness H , x with
wavelength λ, n with the gap averaged number density
〈n0〉, p with the bacterial stress − 3

2Szz〈n0〉, ux with U0ǫ
and uz with U0ǫ

2 yields the following linearized lubri-
cation equations. The x-momentum equation involves a
balance between the viscous stress, the pressure gradient
and the gradient of the bacterial stress:

−β
∂p′

∂x
+

β

3

∂n′

∂x
+

∂2u′
x

∂z2
= 0, (6)

where β = − 3Szz〈n0〉H
2µU0

= 3
8C〈n0〉L

2H is a non-
dimensional gap-averaged bacterial concentration that
reflects the relative strength of the bacterial and viscous
stresses.

The z momentum equation is a balance of the pressure
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gradient and bacterial stress gradient

∂p′

∂z
+

2

3

∂n′

∂z
= 0, (7)

which integrates to p′(x, z, t) = − 2
3n

′(x, z, t) + p̄(x, t)
where p̄(x, t) is a z independent pressure field that as-
sures that there is no net fluid flux in the x direction.
The bacteria number density equation is:

∂2n′

∂z2
+ Pe

∂n′

∂z
+ ǫ2

[

∂2n′

∂x2
−

∂n′

∂t
− Peu′

z

∂n0

∂z

]

= 0. (8)

In the above equations, time has been non-
dimensionalized by ǫ−2H2/D so that the unsteady

term ∂n′

∂t balances the fluid convective term. It will
be seen that this coupling term is the origin of the
instability. The dominant balance in the bacteria
conservation equation between chemotaxis and diffusion
in the z direction yields a quasi-steady, local perturbed
number density profile that is similar to the base state
profile

n′(x, z, t) = 〈n′〉(x, t)
Pe exp(−Pez)

1 − exp(−Pe)
, (9)

The gap-averaged number density 〈n′〉(x, t) will be deter-
mined from the O(ǫ2) gap-averaged bacteria conservation
equation. The solution of the xmomentum equation with
no slip boundary conditions is

u′
x = β

{[

1− exp(−Pez)

Pe[1− exp(−Pe)]
−

z

Pe

]

∂〈n′〉

∂x
+

1

2

∂p̄

∂x
(z2 − z)

}

,

(10)
where the pressure gradient determined by the constraint
of no net fluid flux (〈u′

x〉 = 0) is

∂p̄

∂x
= 6

Pe[1 + exp(−Pe)] + 2[exp(−Pe)− 1]

Pe2[1− exp(−Pe)]

∂〈n′〉

∂x
.

(11)
Integrating Eq. (8) over z = (0, 1) and using the no-flux
and no-slip boundary conditions yields the gap averaged
bacteria concentration equation:

∂〈n′〉

∂t
+ Pe

∂〈u′
xn0〉

∂x
−

∂2〈n′〉

∂x2
= 0, (12)

which shows that the gap-averaged concentration pertur-
bation evolves due to the fluid convective and run-and-
tumble diffusive fluxes in the x direction. The convective
flux will be proportional to ∂〈n′〉

∂x with a sign dependent
on whether the swimmers are pushers or pullers. Us-
ing the fluid velocity field in Eq. (10) driven by bacterial
stresses to evaluate the convective flux, Eq. (12) takes
the form:

∂〈n′〉

∂t
+ (Peαβ − 1)

∂2〈n′〉

∂x2
= 0, (13)
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FIG. 2. Critical bacteria concentration βcrit as a function
of the Peclet number (solid line). The dashed lines are the
asymptotic results: βcrit ∼ 720/Pe3 for Pe ≪ 1 and βcrit ∼ 2
for Pe ≫ 1.

where α is a function of Peclet number given by

α =
1

2Pe
+

{

exp(−Pe)(1 + Pe)− 1

Pe2[1− exp(−Pe)]

}

−3

{

Pe[1 + exp(−Pe)] + 2[exp(−Pe)− 1]

Pe2[1− exp(−Pe)]

}2

(14)

Sinusoidal gap-averaged number density perturbations
evolve according to 〈n′〉 = exp(i2πx + σt) where the
growth rate σ = (2π)2(Peαβ − 1). Since both α and
Pe are positive, instability occurs if β exceeds the criti-
cal value βcrit = (αPe)−1. A suspension of pushers such
as E. Coli or B. Subtilis for which β is positive, is unsta-
ble to number density variations in the x direction above
a critical concentration while puller suspensions having
negative β will be unconditionally stable. Fig. 2 shows
that the critical bacteria concentration βcrit decreases
with increasing Peclet number reaching an asymptote of
2 at high Peclet number.

The mechanism of the instability is illustrated in Fig. 1.
The chemical gradient leads to a base state number den-
sity profile n0(z) that is an exponentially decreasing func-
tion of z and causes a net alignment of the cells in the −z
direction. The disturbance flow of each cell draws fluid
in from the sides and pushes it out at the front and back.
A sinusoidal perturbation in the gap-averaged number
density, 〈n′〉, leads to a number density field, n′ with al-
ternate peaks and valleys (brighter and darker regions
respectively in Fig. 1) at z = 0 owing to the competi-
tion of chemotaxis and diffusion in controlling the local
z-number-density profile. Being pushers, the excess bac-
teria at peaks draw fluid inward at small z while the fluid
returns toward valleys at larger values of z. This fluid
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velocity field acting on the base state number density
field leads to a net gap-averaged convective flux 〈u′

xn0〉
toward the region of high 〈n′〉, thereby reinforcing the
number density perturbation. In the sub-critical regime,
x-diffusion of the bacteria attenuates the concentration
perturbations and stabilizes the suspension. Since the
hydrodynamic disturbance of a puller is exactly opposite
to that of a pusher, a suspension of pullers is always sta-
ble. Since σ is purely real, the instability is stationary
at least in the long-wavelength limit and the streamline
pattern resembles convection cells. A result of the lubri-
cation approximation is that the dimensional growth rate
increases quadratically in the wavenumber 2π/λ. How-
ever, at sufficiently large wavenumbers one expects dif-
fusion to stabilize the suspension implying that a mode
of maximum growth rate should exist. The wavelength
of the most unstable mode can come only from a finite
wavelength analysis with λ ∼ H or smaller. This in-
stability might be expected to lead to the formation of
periodic clusters of bacteria within the channel or film
along x axis with a length scale corresponding to the
most unstable mode.

Sokolov et al.[6] observed three-dimensional convective
motions in films of aerobic bacteria with half-thickness
greater than 100 µm. We refer to the half-film thick-
ness here since the gradient of the attractant oxygen acts
from the mid-plane to the interface when the film is thick
enough so that the bacteria consume oxygen before it dif-
fuses to the mid-plane. Although this experiment involve
a thin film with gas-liquid interfaces, Marangoni stresses
usually lead to a nearly inextensible nature of such inter-
faces making the no slip boundary condition appropriate.
The bacterial concentration in Sokolov et al.’s [6] exper-
iments is 〈n0〉 ≈ 2× 1010 per milliliter. Using L = 12µm
and H = 100µm, the scaled bacteria concentration is
β = 60. It is clear from Fig. 2 that this value exceeds
βcrit if Pe ≥ 2.50. This corresponds to U0/U ≥ 0.17
for a typical bacterial swimming speed of 20 µm/s and
a typical tumbling frequency of 1 s−1 [10]. This value
of U0/U is sufficiently small to make the small ζ analy-
sis accurate. The chemotactic velocity is not known in
Sokolov et al.’s [6] experiments. Nevertheless, the above
analysis suggests a moderate amount of chemotaxis can
drive the instability. The mode of instability predicted
here is consistent with Sokolov et al.’s [6] observations of
convection across the film half-thickness and plumes of
bacteria concentration.

The present instability mechanism differs from previ-
ous for active-stress instabilities [1–4, 12]. Since the ac-
tive bacterial stress depends on both the number den-
sity and orientation distribution of the bacteria, instabil-
ity can arise from the coupling between either the num-
ber density field or the orientation field and the fluid
flow. Previous stability analyses have focused on cou-
pling of fluid shearing motion and swimmer alignment in

unbounded homogeneous suspensions of isotropic [3, 4] or
aligned swimmers with [12] or without chemotaxis [2, 3].
In these cases it is found that the unstable modes do
not involve bacteria number density variations at lead-
ing order in the long wavelength limit. A fluid veloc-
ity perturbation to an isotropic (or nearly isotropic) sus-
pension tends to align the bacteria to the extensional
axis of the fluid velocity field. The hydrodynamic distur-
bance of a pusher then enhances the original velocity per-
turbation resulting in an orientation-shearing instability.
It is possible that this instability accounts for the two-
dimensional motion with no apparent bacteria concen-
tration variation observed by Sokolov et al. [6] at small
film thickness. The instability mechanism described in
the present Letter relies on a base state with a stratified
number density profile. Fluid motion can then lead to
a three-dimensional number density profile and concomi-
tant active stress profile that enhances the number den-
sity variation in the case of pushers. In Sokolov et al.’s [6]
experiments, such an instability is to be expected when
the film is thick enough to allow oxygen and cell gra-
dients to develop across the film half-thickness. A more
definitive experimental test of the theory proposed in this
Letter could be obtained using an experimental cell [8]
that allows the cells to experience a controlled linear gra-
dient of a chemo-attractant that is not consumed by the
cells.
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