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We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes.
The multi-band character of the model together with spin-orbit coupling are key to realizing such a
topological superconductor. We characterize the topological phase diagram by using a partial Chern
number sum, and show that the latter is physically related to the parity of the fermion number of the
time-reversal invariant modes. By taking the self-consistency constraint on the s-wave pairing gap
into account, we also establish the possibility of a direct topological superconductor-to-topological

insulator quantum phase transition.
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Since Majorana suggested the possibility for a fermion
to coincide with its own antiparticle back in 1937 [1], the
search for the Majorana particle has catalized intense ef-
fort across particle and condensed-matter physicists alike
[2]. Particles either constitute the building blocks of a
fundamental physical theory or may effectively emerge
as the result of the interactions of a theory. A Majorana
fermion is no exception to this principle, with neutrinos
potentially epitomizing the first view [3], and localized
quasiparticle excitations in matter illustrating the second
[4]. Remarkably, Majorana fermions can give rise to the
emergence of non-Abelian braiding [6]. Thus, in addition
to their significance for fundamental quantum physics,
interest in realizing and controlling Majorana fermions
has been fueled in recent years by the prospect of imple-
menting fault-tolerant topological quantum computation
[7, 8]. As a result, a race is underway to conclusively
detect and characterize these elusive particles.

A variety of condensed-matter systems hosting local-
ized Majorana elementary excitations have been pro-
posed, notably certain quantum Hall states [6] and so-
called topological superconductors (TSs) [9, 10]. Unfortu-
nately, these exotic states of matter require the explicit
breaking of time-reversal (TR) symmetry and their phys-
ical realization seems to be at odds with existent mate-
rials. Such is the case, for instance, of superconductors
with p, +ip, spin-triplet pairing symmetry. This has not
prevented researchers to pursue creative proposals that
rely on a combination of carefully crafted materials and
devices. Fu and Kane [11], in particular, suggested the
use of a (topologically trivial) s-wave superconducting
film on top of a three-dimensional topological insulator
(TT), which by proximity effect transforms the non-trivial
surface state of the TI into a localized Majorana excita-
tion [4, 12] (see also [5] for related early contributions).
While experimental realization of this idea awaits further
progress in material science, alternative routes are be-
ing actively sought, including schemes based on metallic
thin-film microstructures, quantum nanowires, and semi-
conductor quantum wells coupled to either a ferromag-

netic insulator, or to a magnetic field in materials with
strong spin-orbit (SO) coupling [13].

Our motivation in this work is to explore whether a
path to TSs exists based on conventional bulk s-wave
spin-singlet pairing superconductivity. We answer this
question by explicitly constructing a model which, to the
best of our knowledge, provides the first example of a
2D TS with s-wave pairing symmetry, and supports Ma-
jorana edge modes without breaking TR symmetry [14].
The key physical insight is the multi-band character of the
model, in the same spirit of two-gap superconductors [15],
but with the SO coupling playing a crucial role in turn-
ing a trivial two-gap superconductor into a topologically
non-trivial one. Our results advance existing approaches
in several ways. First, multi-band systems clearly expand
the catalog of TI and TS materials. Following the dis-
covery of s-wave two-band superconductivity in MgBs
in 2001, a number of two-gap superconductors ranging
from high-temperature cuprates to heavy-fermion and
iron-based superconductors have already been character-
ized in the laboratory [16], giving hope for a near-future
material implementation. Furthermore, from a theoreti-
cal standpoint, our TR-invariant model also supports a
direct TI-to-TS (first-order) quantum phase transition
(QPT), allowing one to probe these novel topological
phases and their surface states by suitably tuning con-
trol parameters in the same physical system.

FEzact solution with periodic boundary conditions.—
We consider a TR-invariant two-band Hamiltonian of the
form H = Heyy + Hso + Hsw + H.c., where
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represent the two-band (¢ and d) dynamics, the SO in-
teraction, and s-wave superconducting fluctuations, re-



spectively. In the above equations, p is the chemical
potential, u.q represents an onsite spin-independent “hy-
bridization term” between the two bands, fermionic cre-
ation operators at lattice site j (unit vectors Z,y) and
spin o =7, | are specified as c}yg or d}yg, depending on
the band, and (A., Ag4) denote the mean-field s-wave
pairing gaps. By letting ¢; = (cj1,¢j1,dj1,djy )T, the
Pauli matrices 7, and o, act on the orbital and spin part,
respectively. Notice that we have implicitly assumed that
the intraband SO coupling strengths obey A, = —Ag = A.
In this way, in the limit where u =0 = A, = Ay, H re-
duces to a known model for a TT [17].

For general parameter values and periodic bound-
ary conditions (PBC), H can be block-diagonalized
by Fourier transformation in both x and y. That
is, we can rewrite H = %Zk(ALHkAk — 4p), with

AL = (CL,T’CL,J,’dLT’dLJ,’ka,’r’ka,i’dfk,’r’dfkyi)’ and
Hy an 8 x 8 matrix. An analytical solution exists in
the limit where the pairing gaps are w-shifted, A, =
—Ag = A, since flk decouples into two 4 x 4 matri-
ces. By introducing new canonical fermion operators,
k,oc = \/Li(ck,a' + dk,o); bk,cr = \/Li(ck,a' - dk,o); we
may rewrite H = %Zk(éltﬁllék — 4u), with Bch =
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Here, Ax = —2X(sinky,sinky), mx = ucq — 2t(cosk, +
cosky), and & = (04,0y). The excitation spectrum ob-
tained from diagonalizing either Hj, or ﬁék is

Enk = j:\/mi+§22+|)\k|2j: 20/ mE+ 2?2, (2)

where the order 1 x < e2x < 0 < €3k < ek is as-
sumed and Q2 = u? + A%, QPTs occur when the gap
closes (€2 x = 0, for general A # 0), leading to the crit-
ical lines determined by my, = £, where the criti-
cal modes k. € {(0,0),(0,n), (m,0), (m,m)}. It is worth
noticing that through a suitable unitary transformation
(see Eq. (4) of Ref. [18]), the SO interaction in Eq. (1)
is formally mapped into p, + ip, and p; — ip, intraband
interaction, hinting at the existence of non-trivial topo-
logical phases, as we demonstrate next.

Topological response.— Since H preserves TR invari-
ance, bands which form TR-pairs have opposite bulk
Chern numbers (CNs) C,,, leading to > Cn,=0

(including both A/ , and HY, ). Thus, introducing a new
75 topological invariant is necessary in order to distin-
guish between trivial and TS phases. In Ref. [19], the
parity of the sum of the positive CNs was considered,
whereas in Ref. [20] an integral of the Berry curvature
over half the Brillouin zone for all the occupied bands was
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FIG. 1: (Color online) Topological characterization of the
phase structure of Hamiltonian H via the partial CN sum C
as a function of ucq and A, with ¢ = 1 and arbitrary A # 0,
for representative chemical potentials 4 = 0 (top) and = —1
(bottom). The black (dashed) line represents an insulator or
metal phase, depending on the filling, with A = 0. CNs are
calculated for (N, N,) = (100,100) lattice sites. Note that
we may have two pairs of edge modes with Cy = 0.

used. Here, we propose a different Z5 invariant which is
guaranteed to work in the presence of TR: taking advan-
tage of the decoupled structure between TR-pairs, we use
the CNs of the two occupied negative bands of H {7k only
(say, C1 and C3) and define the following parity invariant:

Po = (—1)m®C) o =0 + O, (3)

Let |1y, x) denote the band-n eigenvector of ﬁ{k Then
the required CNs Cy,, n = 1,2, can be computed as [21]

1 s ™
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The resulting topological phase structure is shown in
Fig. 1 by treating the pairing gap A as a free control
parameter. In an actual physical system, A cannot be
changed at will, but only be found self-consistently by
minimizing the free energy (or ground-state energy at
zero temperature). While we shall return on this issue
later, we first focus on understanding the physical mean-
ing of the above invariant and on establishing a bulk-
boundary correspondence for our model.

Interestingly, there is a direct connection between the
invariant Po and the fermion number parity of the
TR~invariant modes. Without loss of generality, let
u = 0, and focus on the ground-state fermion num-
ber parity of the four TR-invariant points in the first



Brillouin zone, k.. Since fl{k and flék are decou-
pled, we need only concentrate on the ground-state par-
ity property of Hj,. Let us introduce the new basis:

ue, = {af_;|vac), bl |vac),|vac),af bl ||vac)}. In
this basis, H{)k becomes Hyx, = mk, 0, ® Aoy, with

eigenvalues +my_, £A, and an identical matrix for Hé,kc
in the TR-basis. When |my,| > |Al, the ground state of
each mode k. is in the sector with odd fermion parity,
P, = e (e 1810 1Bl Bice ) = —1, otherwise it is in the
sector with even fermion parity Px, = 1. By analyzing
the relation between |my_| and |A| for each k., we can see
that the TS (trivial) phases with P = —1(1) correspond
to the ground state with [[,_, P«. = Pr = —1(1).
Thus, our Z invariant coincides with the fermion num-
ber parity of the four TR-invariant modes from one rep-
resentative of each Kramer’s pairs, consistent with the
fact that only a partial CN sum can detect TS phases
in the presence of TR symmetry. While the relation be-
tween non-trivial topological signatures (such as the frac-
tional Josephson effect) and the local fermion parity of
Majorana edge states has been discussed in the litera-
ture [7, 22, 23], invoking the fermion number parity of
the TR-invariant modes in bulk periodic systems to char-
acterize T'S phases has not, to the best of our knowledge.

Open boundary conditions and edge states.— A hall-
mark of a TS is the presence of an odd number of pairs of
gapless helical edge states, satisfying Majorana fermion
statistics. Thus, in order to understand the relation be-
tween Po (or Pr) and the parity of the number of edge
states, i.e., a bulk-boundary correspondence, we study
the Hamiltonian H on a cylinder. That is, we retain
PBC only along x, and correspondingly obtain the exci-
tation spectrum, €, j,, by applying a Fourier transforma-
tion in the x-direction only. For simplicity, let us again
focus on the case p = 0. The resulting excitation spec-
trum is depicted in Fig. 2 for representative parameter
choices. Specifically, for odd Pc (C1 = 1 in panel (a)
and C; = —1 in panel (b), respectively), H supports one
TR-pair of helical edge states on each boundary, corre-
sponding to the Dirac points k, = 0 (a) and k; = 7 (b).
Different possibilities arise for even Pc. While Cy = 0
can clearly also indicate the absence of edge states, in
panel (c) one TR-pair of helical edge states exists on
each boundary for both Dirac points k, = 0,7 (for a to-
tal of two pairs, as also explicitly indicated in Fig. 1). In
panel (d) (C; = 2), both TR-pairs of helical edge states
correspond to the Dirac point k, = 0 instead. Since, as
remarked, our Hamiltonian exhibits particle-hole symme-
try, the equation Ve oy = WT—en,kz holds for each eigen-
value €, k,, where Ve, is the associated quasi-particle
annihilation operator. Thus, for zero-energy edge states,
Yo = 7(];, indicating that the edge states in our system
satisfy Majorana fermion statistics.

Phase diagram with self-consistent pairing gap.—
Within BCS mean-field theory, let V = Vik i > 0 de-

FIG. 2: (Color online) Excitation spectrum of Hamiltonian
H on a cylinder for 4 = 0,t = 1,\ = 1. Panel (a), Cy = 1:
A =2, ucqg = 3; Panel (b), Cy = —1: A = 2.5, ucq = 2; Panel
(¢), C+ =0: A =2, ueqg = 1; Panel (d), Cy+ =2: A =0.8,
Ueq = 1.5. Note that the bulk gap scales as min(\, A). The
number of lattice sites (N, Ny,) = (40, 100).

note the effective attraction strength in each band. Then
the pairing gap A = A, = —V{ekrc-x,)) = —Ag,
and the ground-state energy can be written as £, =
2N, N, (A%V)+ Y, (€1,k +€2,k —2p). The first (constant)
term is the condensation energy, which was neglected in
H. By using Eq. (2) and minimizing E,;, we obtain
the stable self-consistent pairing gap A as a function
of the remaining control parameters [24]. The result-
ing zero-temperature phase diagram is shown in Fig. 3.
For 4 = 0 (top panel), the average fermion number is
consistent with half-filling, and thus with an insulating
phase when A = 0. In particular, when 0 < |ucq| < 4,
the ground state is known to correspond to a TI phase
[17]. Interestingly, without self-consistency, the TT can-
not be turned into a TS directly, as shown in the top panel
of Fig. 1. However, after self-consistency is taken into
account, the topologically trivial phase with Cy = 42
disappears, and a first-order QPT can connect the two
phases. For p = —1 (bottom panel), the average fermion
number is found to be less than half-filling, realizing a
metallic phase when A = 0. Derivatives of the ground-
state energy indicate that all QPTs, except the TI-to-TS
phase transition, are continuous.

Discussion.— A number of remarks are in order. First,
while the choice of SO coupling strengths and s-wave
pairing gaps obeying A\, = —Ay and A, = —A, affords a
fully analytical treatment, relaxing these conditions may
be necessary to make contact with real materials. Nu-
merical results on a cylinder show that the level crossing
of the Majorana edge states in the TS phase is robust
against perturbations around A\. = —J\4, including the
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FIG. 3: (Color online) Phase diagram as a function of ucq
and V with the pairing gap A calculated self-consistently.
The magnitude of A is represented by a color, whose scale is
indicated on the side. The number of lattice sites (Ng, Ny) =
(80, 80).

possibility that the SO coupling vanishes in one of the
bands. TS behavior also persists if |A.| — |Aq4| # 0, as
long as the phase difference between pairing gaps is 7.
In the presence of a phase mismatch e, edge modes are
found to become gapped, with a minimal gap that scales
linearly with . Interestingly, however, preliminary re-
sults indicate that adding a suitable Zeeman field can
allow (at the expense of breaking TR invariance) gapless
Majorana excitations to be restored, with a precise tun-
ing of the phase difference being no longer required. It is
also worth noting that one can reinterpret the band index
in H as a layer index, and so H may be thought of as de-
scribing a bilayer of superconductors with phase-shifted
pairing gaps, and an interlayer coupling H.y. Beside es-
tablishing a formal similarity with the scenario discussed
by Fu and Kane [11], such an interpretation may offer
additional implementation flexibility, as the possibility
to control the superconducting and SO couplings by an
applied gate voltage has been demonstrated recently [25].

Second, we have thus far restricted to 2D systems in or-
der to simplify calculations. Preliminary results indicate
that a qualitatively similar behavior (that is, the possi-
bility of even/odd numbers of pairs of gapless Majorana
surface states) also exists for 3D systems obtained from

a natural extension of our 2D Hamiltonian. It is espe-
cially suggestive to note that a 7w phase shift in the order
parameter across two bands is also believed to play a key
role in iron pnictide superconductors [26], hinting at pos-
sible relationships between T'S behavior and so-called s+
pairing symmetry. While a more detailed investigation is
underway, it is our hope that multi-band superconduc-
tivity may point to new experimentally viable venues for
exploring topological phases and their exotic excitations.
It is a pleasure to thank Charlie Kane for insightful
discussions. Support from the NSF through Grants No.
PHY-0903727 and 1066293 is gratefully acknowledged.
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