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We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes.
The multi-band character of the model together with spin-orbit coupling are key to realizing such a
topological superconductor. We characterize the topological phase diagram by using a partial Chern
number sum, and show that the latter is physically related to the parity of the fermion number of the
time-reversal invariant modes. By taking the self-consistency constraint on the s-wave pairing gap
into account, we also establish the possibility of a direct topological superconductor-to-topological
insulator quantum phase transition.
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Since Majorana suggested the possibility for a fermion
to coincide with its own antiparticle back in 1937 [1], the
search for the Majorana particle has catalized intense ef-
fort across particle and condensed-matter physicists alike
[2]. Particles either constitute the building blocks of a
fundamental physical theory or may effectively emerge
as the result of the interactions of a theory. A Majorana
fermion is no exception to this principle, with neutrinos
potentially epitomizing the first view [3], and localized
quasiparticle excitations in matter illustrating the second
[4]. Remarkably, Majorana fermions can give rise to the
emergence of non-Abelian braiding [6]. Thus, in addition
to their significance for fundamental quantum physics,
interest in realizing and controlling Majorana fermions
has been fueled in recent years by the prospect of imple-
menting fault-tolerant topological quantum computation
[7, 8]. As a result, a race is underway to conclusively
detect and characterize these elusive particles.

A variety of condensed-matter systems hosting local-
ized Majorana elementary excitations have been pro-
posed, notably certain quantum Hall states [6] and so-
called topological superconductors (TSs) [9, 10]. Unfortu-
nately, these exotic states of matter require the explicit
breaking of time-reversal (TR) symmetry and their phys-
ical realization seems to be at odds with existent mate-
rials. Such is the case, for instance, of superconductors
with px+ipy spin-triplet pairing symmetry. This has not
prevented researchers to pursue creative proposals that
rely on a combination of carefully crafted materials and
devices. Fu and Kane [11], in particular, suggested the
use of a (topologically trivial) s-wave superconducting
film on top of a three-dimensional topological insulator
(TI), which by proximity effect transforms the non-trivial
surface state of the TI into a localized Majorana excita-
tion [4, 12] (see also [5] for related early contributions).
While experimental realization of this idea awaits further
progress in material science, alternative routes are be-
ing actively sought, including schemes based on metallic
thin-film microstructures, quantum nanowires, and semi-
conductor quantum wells coupled to either a ferromag-

netic insulator, or to a magnetic field in materials with
strong spin-orbit (SO) coupling [13].
Our motivation in this work is to explore whether a

path to TSs exists based on conventional bulk s-wave
spin-singlet pairing superconductivity. We answer this
question by explicitly constructing a model which, to the
best of our knowledge, provides the first example of a
2D TS with s-wave pairing symmetry, and supports Ma-
jorana edge modes without breaking TR symmetry [14].
The key physical insight is themulti-band character of the
model, in the same spirit of two-gap superconductors [15],
but with the SO coupling playing a crucial role in turn-
ing a trivial two-gap superconductor into a topologically
non-trivial one. Our results advance existing approaches
in several ways. First, multi-band systems clearly expand
the catalog of TI and TS materials. Following the dis-
covery of s-wave two-band superconductivity in MgB2

in 2001, a number of two-gap superconductors ranging
from high-temperature cuprates to heavy-fermion and
iron-based superconductors have already been character-
ized in the laboratory [16], giving hope for a near-future
material implementation. Furthermore, from a theoreti-
cal standpoint, our TR-invariant model also supports a
direct TI-to-TS (first-order) quantum phase transition
(QPT), allowing one to probe these novel topological
phases and their surface states by suitably tuning con-
trol parameters in the same physical system.
Exact solution with periodic boundary conditions.—

We consider a TR-invariant two-band Hamiltonian of the
form H = Hcd +Hso +Hsw +H.c., where

Hcd =
1

2

∑

j

(ucdψ
†
jτxψj − µψ

†
jψj)− t

∑

〈i,j〉
ψ
†
i τxψj ,

Hso = iλ
∑

j,ν=x̂,ŷ

ψ
†
jτzσνψj+ν ,

Hsw =
∑

j

(∆cc
†
j,↑c

†
j,↓ +∆dd

†
j,↑d

†
j,↓), (1)

represent the two-band (c and d) dynamics, the SO in-
teraction, and s-wave superconducting fluctuations, re-
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spectively. In the above equations, µ is the chemical
potential, ucd represents an onsite spin-independent “hy-
bridization term” between the two bands, fermionic cre-
ation operators at lattice site j (unit vectors x̂, ŷ) and

spin σ =↑, ↓ are specified as c†j,σ or d†j,σ, depending on
the band, and (∆c, ∆d) denote the mean-field s-wave
pairing gaps. By letting ψj ≡ (cj,↑, cj,↓, dj,↑, dj,↓)T , the
Pauli matrices τν and σν act on the orbital and spin part,
respectively. Notice that we have implicitly assumed that
the intraband SO coupling strengths obey λc = −λd ≡ λ.
In this way, in the limit where µ = 0 = ∆c = ∆d, H re-
duces to a known model for a TI [17].
For general parameter values and periodic bound-

ary conditions (PBC), H can be block-diagonalized
by Fourier transformation in both x and y. That
is, we can rewrite H = 1

2

∑
k
(Â†

k
ĤkÂk

− 4µ), with

Â
†
k
= (c†

k,↑, c
†
k,↓, d

†
k,↑, d

†
k,↓, c−k,↑, c−k,↓, d−k,↑, d−k,↓), and

Ĥk an 8 × 8 matrix. An analytical solution exists in
the limit where the pairing gaps are π-shifted, ∆c =
−∆d ≡ ∆, since Ĥk decouples into two 4 × 4 matri-
ces. By introducing new canonical fermion operators,
ak,σ = 1√

2
(ck,σ + dk,σ), bk,σ = 1√

2
(ck,σ − dk,σ), we

may rewrite H = 1
2

∑
k
(B̂†

k
Ĥ ′

k
B̂

k
− 4µ), with B̂

†
k

=

(a†
k,↑, b

†
k,↓, a−k,↑, b−k,↓, a

†
−k,↓, b

†
−k,↑, ak,↓, bk,↑), and Ĥ

′
k
=

Ĥ ′
1,k ⊕ Ĥ ′

2,k, with Ĥ
′
1,k, Ĥ

′
2,k being TR of one another,

Ĥ ′
1,k=

(
mkσz − µ+ λk · ~σ i∆σy

−i∆σy −mkσz + µ+ λk · ~σ∗

)
.

Here, λk = −2λ(sinkx, sin ky), mk = ucd − 2t(cos kx +
cos ky), and ~σ ≡ (σx, σy). The excitation spectrum ob-

tained from diagonalizing either Ĥ ′
1,k or Ĥ ′

2,k is

ǫn,k = ±

√
m2

k
+Ω2+|λk|2± 2

√
m2

k
Ω2+µ2|λk|2, (2)

where the order ǫ1,k ≤ ǫ2,k ≤ 0 ≤ ǫ3,k ≤ ǫ4,k is as-
sumed and Ω2 ≡ µ2 + ∆2. QPTs occur when the gap
closes (ǫ2,k = 0, for general ∆ 6= 0), leading to the crit-
ical lines determined by mkc

= ±Ω, where the criti-
cal modes kc ∈ {(0, 0), (0, π), (π, 0), (π, π)}. It is worth
noticing that through a suitable unitary transformation
(see Eq. (4) of Ref. [18]), the SO interaction in Eq. (1)
is formally mapped into px + ipy and px − ipy intraband
interaction, hinting at the existence of non-trivial topo-
logical phases, as we demonstrate next.
Topological response.— Since H preserves TR invari-

ance, bands which form TR-pairs have opposite bulk
Chern numbers (CNs) Cn, leading to

∑
n∈occupied Cn = 0

(including both Ĥ ′
1,k and Ĥ ′

2,k). Thus, introducing a new
Z2 topological invariant is necessary in order to distin-
guish between trivial and TS phases. In Ref. [19], the
parity of the sum of the positive CNs was considered,
whereas in Ref. [20] an integral of the Berry curvature
over half the Brillouin zone for all the occupied bands was
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FIG. 1: (Color online) Topological characterization of the
phase structure of Hamiltonian H via the partial CN sum C+

as a function of ucd and ∆, with t = 1 and arbitrary λ 6= 0,
for representative chemical potentials µ = 0 (top) and µ = −1
(bottom). The black (dashed) line represents an insulator or
metal phase, depending on the filling, with ∆ = 0. CNs are
calculated for (Nx, Ny) = (100, 100) lattice sites. Note that
we may have two pairs of edge modes with C+ = 0.

used. Here, we propose a different Z2 invariant which is
guaranteed to work in the presence of TR: taking advan-
tage of the decoupled structure between TR-pairs, we use
the CNs of the two occupied negative bands of Ĥ ′

1,k only

(say, C1 and C2) and define the following parity invariant:

PC ≡ (−1)mod2(C+), C+ ≡ C1 + C2. (3)

Let |ψn,k〉 denote the band-n eigenvector of Ĥ ′
1,k. Then

the required CNs Cn, n = 1, 2, can be computed as [21]

Cn =
1

π

∫ π

−π

dkx

∫ π

−π

dky Im 〈∂kx
ψn,k|∂ky

ψn,k〉. (4)

The resulting topological phase structure is shown in
Fig. 1 by treating the pairing gap ∆ as a free control
parameter. In an actual physical system, ∆ cannot be
changed at will, but only be found self-consistently by
minimizing the free energy (or ground-state energy at
zero temperature). While we shall return on this issue
later, we first focus on understanding the physical mean-
ing of the above invariant and on establishing a bulk-
boundary correspondence for our model.
Interestingly, there is a direct connection between the

invariant PC and the fermion number parity of the
TR-invariant modes. Without loss of generality, let
µ = 0, and focus on the ground-state fermion num-
ber parity of the four TR-invariant points in the first
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Brillouin zone, kc. Since Ĥ ′
1,k and Ĥ ′

2,k are decou-
pled, we need only concentrate on the ground-state par-
ity property of Ĥ ′

1,k. Let us introduce the new basis:

ukc
≡ {a†

kc,↑|vac〉, b
†
kc,↓|vac〉, |vac〉, a

†
kc,↑b

†
kc,↓|vac〉}. In

this basis, Ĥ ′
1,k becomes Ĥ1,kc

= mkc
σz ⊕ ∆σx, with

eigenvalues ±mkc
,±∆, and an identical matrix for Ĥ ′

2,kc

in the TR-basis. When |mkc
| > |∆|, the ground state of

each mode kc is in the sector with odd fermion parity,

Pkc
= eiπ(a

†

kc,↑
a
kc,↑

+b
†

kc,↓
b
kc,↓) = −1, otherwise it is in the

sector with even fermion parity Pkc
= 1. By analyzing

the relation between |mkc
| and |∆| for each kc, we can see

that the TS (trivial) phases with PC = −1(1) correspond
to the ground state with

∏
k=kc

Pkc
≡ PF = −1(1).

Thus, our Z2 invariant coincides with the fermion num-
ber parity of the four TR-invariant modes from one rep-

resentative of each Kramer’s pairs, consistent with the
fact that only a partial CN sum can detect TS phases
in the presence of TR symmetry. While the relation be-
tween non-trivial topological signatures (such as the frac-
tional Josephson effect) and the local fermion parity of
Majorana edge states has been discussed in the litera-
ture [7, 22, 23], invoking the fermion number parity of
the TR-invariant modes in bulk periodic systems to char-
acterize TS phases has not, to the best of our knowledge.

Open boundary conditions and edge states.— A hall-
mark of a TS is the presence of an odd number of pairs of
gapless helical edge states, satisfying Majorana fermion
statistics. Thus, in order to understand the relation be-
tween PC (or PF ) and the parity of the number of edge
states, i.e., a bulk-boundary correspondence, we study
the Hamiltonian H on a cylinder. That is, we retain
PBC only along x, and correspondingly obtain the exci-
tation spectrum, ǫn,kx

, by applying a Fourier transforma-
tion in the x-direction only. For simplicity, let us again
focus on the case µ = 0. The resulting excitation spec-
trum is depicted in Fig. 2 for representative parameter
choices. Specifically, for odd PC (C+ = 1 in panel (a)
and C+ = −1 in panel (b), respectively), H supports one
TR-pair of helical edge states on each boundary, corre-
sponding to the Dirac points kx = 0 (a) and kx = π (b).
Different possibilities arise for even PC . While C+ = 0
can clearly also indicate the absence of edge states, in
panel (c) one TR-pair of helical edge states exists on
each boundary for both Dirac points kx = 0, π (for a to-
tal of two pairs, as also explicitly indicated in Fig. 1). In
panel (d) (C+ = 2), both TR-pairs of helical edge states
correspond to the Dirac point kx = 0 instead. Since, as
remarked, our Hamiltonian exhibits particle-hole symme-
try, the equation γǫn,kx

= γ
†
−ǫn,kx

holds for each eigen-
value ǫn,kx

, where γǫn,kx
is the associated quasi-particle

annihilation operator. Thus, for zero-energy edge states,
γ0 = γ

†
0, indicating that the edge states in our system

satisfy Majorana fermion statistics.

Phase diagram with self-consistent pairing gap.—

Within BCS mean-field theory, let V ≡ Vk,k′ > 0 de-
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FIG. 2: (Color online) Excitation spectrum of Hamiltonian
H on a cylinder for µ = 0, t = 1, λ = 1. Panel (a), C+ = 1:
∆ = 2, ucd = 3; Panel (b), C+ = −1: ∆ = 2.5, ucd = 2; Panel
(c), C+ = 0: ∆ = 2, ucd = 1; Panel (d), C+ = 2: ∆ = 0.8,
ucd = 1.5. Note that the bulk gap scales as min(λ,∆). The
number of lattice sites (Nx, Ny) = (40, 100).

note the effective attraction strength in each band. Then
the pairing gap ∆ = ∆c = −V 〈ck,↑c−k,↓〉 = −∆d,
and the ground-state energy can be written as Eg =
2NxNy(∆

2V )+
∑

k
(ǫ1,k+ǫ2,k−2µ). The first (constant)

term is the condensation energy, which was neglected in
H . By using Eq. (2) and minimizing Eg, we obtain
the stable self-consistent pairing gap ∆ as a function
of the remaining control parameters [24]. The result-
ing zero-temperature phase diagram is shown in Fig. 3.
For µ = 0 (top panel), the average fermion number is
consistent with half-filling, and thus with an insulating
phase when ∆ = 0. In particular, when 0 < |ucd| < 4,
the ground state is known to correspond to a TI phase
[17]. Interestingly, without self-consistency, the TI can-
not be turned into a TS directly, as shown in the top panel
of Fig. 1. However, after self-consistency is taken into
account, the topologically trivial phase with C+ = ±2
disappears, and a first-order QPT can connect the two
phases. For µ = −1 (bottom panel), the average fermion
number is found to be less than half-filling, realizing a
metallic phase when ∆ = 0. Derivatives of the ground-
state energy indicate that all QPTs, except the TI-to-TS
phase transition, are continuous.

Discussion.— A number of remarks are in order. First,
while the choice of SO coupling strengths and s-wave
pairing gaps obeying λc = −λd and ∆c = −∆d affords a
fully analytical treatment, relaxing these conditions may
be necessary to make contact with real materials. Nu-
merical results on a cylinder show that the level crossing
of the Majorana edge states in the TS phase is robust

against perturbations around λc = −λd, including the
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FIG. 3: (Color online) Phase diagram as a function of ucd

and V with the pairing gap ∆ calculated self-consistently.
The magnitude of ∆ is represented by a color, whose scale is
indicated on the side. The number of lattice sites (Nx, Ny) =
(80, 80).

possibility that the SO coupling vanishes in one of the
bands. TS behavior also persists if |∆c| − |∆d| 6= 0, as
long as the phase difference between pairing gaps is π.
In the presence of a phase mismatch ε, edge modes are
found to become gapped, with a minimal gap that scales
linearly with ε. Interestingly, however, preliminary re-
sults indicate that adding a suitable Zeeman field can
allow (at the expense of breaking TR invariance) gapless
Majorana excitations to be restored, with a precise tun-
ing of the phase difference being no longer required. It is
also worth noting that one can reinterpret the band index
in H as a layer index, and so H may be thought of as de-
scribing a bilayer of superconductors with phase-shifted
pairing gaps, and an interlayer coupling Hcd. Beside es-
tablishing a formal similarity with the scenario discussed
by Fu and Kane [11], such an interpretation may offer
additional implementation flexibility, as the possibility
to control the superconducting and SO couplings by an
applied gate voltage has been demonstrated recently [25].

Second, we have thus far restricted to 2D systems in or-
der to simplify calculations. Preliminary results indicate
that a qualitatively similar behavior (that is, the possi-
bility of even/odd numbers of pairs of gapless Majorana
surface states) also exists for 3D systems obtained from

a natural extension of our 2D Hamiltonian. It is espe-
cially suggestive to note that a π phase shift in the order
parameter across two bands is also believed to play a key
role in iron pnictide superconductors [26], hinting at pos-
sible relationships between TS behavior and so-called s±
pairing symmetry. While a more detailed investigation is
underway, it is our hope that multi-band superconduc-
tivity may point to new experimentally viable venues for
exploring topological phases and their exotic excitations.
It is a pleasure to thank Charlie Kane for insightful
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