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We study the covering of the plane by non-overlapping rhombus tiles, a problem well-studied only
in the limiting case of dimer coverings of regular lattices. We go beyond this limit by allowing tiles
to take any position and orientation on the plane, to be of irregular shape, and to possess different
types of attractive interactions. Using extensive numerical simulations we show that at large tile
densities there is a phase transition from a fluid of rhombus tiles to a solid packing with broken
rotational symmetry. We observe self-assembly of broken-symmetry phases, even at low densities,
in the presence of attractive tile-tile interactions. Depending on tile shape and interactions the
solid phase can be random, possessing critical orientational fluctuations, or crystalline. Our results
suggest strategies for controlling tiling order in experiments involving ‘molecular rhombi’.

Two-dimensional molecular networks can impart
chemical and physical functionalities to semiconduc-
tor, metallic and graphite surfaces [1, 2]. They also
provide fascinating problems of fundamental science.
Small organic molecules, such as p-terphenyl-3,5,3”,5”-
tetracarboxylic acid (TPTC), can form two-dimensional
glassy arrays [3, 4] characterized by the absence of long-
range translational symmetry. By mapping such arrays
onto a rhombus tiling, a classic problem of statistical me-
chanics [5–13], one can demonstrate that patterns seen
in experiment correspond to configurations of maximum
entropy [4]. However, the mapping assumes that the
rhombus tiling is constrained by an underlying triangular
lattice, and that tiles can effect a complete dimer cover-
ing of this lattice, i.e. that TPTC can be represented as
what we will call a regular rhombus whose internal angles
are 60◦ and 120◦. In reality, the graphite lattice used in
experiment supports multiple registries and orientations
of the molecular overlayer, and molecules do not possess
exactly the aspect ratio of the regular rhombus.

Motivated by these observations, we use computer
simulation to explore the consequences of relaxing the
conventional constraints of rhombus tilings: we study
rhombi that need not be regular, and that can be placed
in any position and with any orientation on the plane.
We first show that regular rhombi form hexatic random
tilings at high densities, an observation that justifies the
conventional lattice approximation. Motivated by recent
experiments, we then show that hydrogen bond-like in-
teractions induce the regular rhombus to self-assemble
into a random tiling even at low concentrations. We go
on to identify geometric and energetic factors that that
dictate where tilings are random, ordered, or nonexis-
tent. We argue that these factors might be exploited in
experiment to control tiling order.

Model. We simulated the packing and self-assembly
of hard rhombi with a long-to-short diagonal aspect ra-

∗swhitelam@lbl.gov

 time 800, eps_parallel =  5,  eps_sixty =  5,  eps_nonspec =  1, mu = 0 

 linker length/a = 0.1 

 particles =253, nrg = -2.78261, n_parallel =42; n_60= 58; psi = 0.0580046 

aA
a

0.6 0.7 0.8 0.9
ρ

0

0.5

1

〈c
os

(6
θ i

j)
〉

 time 0, eps_parallel =  0,  eps_sixty =  0,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =768, nrg = 0, n_parallel =126; n_60= 181; psi = 0.0383302 

 time 0, eps_parallel =  0,  eps_sixty =  0,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =768, nrg = 0, n_parallel =93; n_60= 144; psi = 0.000849618 

 time 0, eps_parallel =  0,  eps_sixty =  0,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =768, nrg = 0, n_parallel =53; n_60= 64; psi = 0.124511 

〈ρ〉

model

l∆

〈c
o
s
6
θ i

j
〉

FIG. 1: Off-lattice rhombi tile the plane: constant-pressure
simulations of hard rhombi of aspect ratio A =

√
3 show the

emergence of long range hexatic order at densities ρ above
about 70%. Here and subsequently, rhombi are colored ac-
cording to their absolute orientations. Left: model geometry,
overlaid by isosurface of TPTC ground-state electron density.

tio A (see Fig. 1, left) on a featureless two-dimensional
substrate; the regular rhombus with internal angles 60◦

and 120◦ has A =
√

3. The short diagonal length a
is typically 1 nm for molecules studied experimentally.
Such molecules interact via highly directional hydrogen
bonding; to model this we equipped rhombi with patches
placed on each edge a distance l∆ from the small inter-
nal angle (l is edge length). Patches on adjacent rhombi
give rise to a ‘specific’ energetic reward of −εs kBT if
they approach closer than a distance a/10. To assess
the importance of interaction specificity we also con-
sidered, in Fig. 4, a rhombus-shaped nonspecific force-
field of identical aspect ratio and small diagonal length
a0 = 11a/10 (see particle ‘halo’ in Fig. 1, inset): the
overlap of two forcefields triggers a pairwise energetic re-
ward of −εn kBT . As described in the Supporting In-
formation, we used a collection of custom- and standard
Monte Carlo algorithms to study tiling thermodynamics
and dynamics. We also used density functional theory
(DFT) to locate TPTC within a ‘design space’ of molec-
ular rhombi. We characterized solid order using the pa-
rameter Ψ ≡ (0.608n‖ − 0.392n‖̄)/(0.608n‖ + 0.392n‖̄).
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 time 1080000, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =462, nrg = -7.42857, n_parallel =451; n_60= 209; psi = 0.539906 
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 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =565, nrg = -7.77699, n_parallel =615; n_60= 230; psi = 0.611446 
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 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =555, nrg = -7.8609, n_parallel =295; n_60= 544; psi = -0.0863151 

 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =567, nrg = -7.92381, n_parallel =290; n_60= 574; psi = -0.121317 

 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =506, nrg = -8.33439, n_parallel =668; n_60= 143; psi = 0.757438 
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 time 1080000, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 
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 particles =462, nrg = -7.42857, n_parallel =451; n_60= 209; psi = 0.539906 
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 time 1620000, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =476, nrg = -7.26471, n_parallel =233; n_60= 432; psi = -0.0890009 
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FIG. 2: Rhombus tiles with attractive ‘H-bond’ interactions self-assemble into random- and ordered solid phases. Regular
rhombi (A =

√
3) assemble as a random solid; sufficiently irregular rhombi form the parallel ordered one (see top right; error

bars denote one standard deviation). Snapshot enlargements show that the ordered phase emerges when the 3-particle ‘boxes’
required to form the random tiling become geometrically strained.

Here n‖ is the total number (within the simulation box
or the largest cluster, as appropriate) of specific interac-
tions (‘H-bonds’) between particle pairs whose long di-
agonals lie closer to being parallel than nonparallel. n‖̄
is the total number of all other H-bonds. This parame-
ter (a generalization of a lattice order parameter defined
recently [14]) allows us to distinguish random tiled struc-
tures (|Ψ| ≈ 0) from crystalline structures with parallel
order (Ψ . 1) or nonparallel order (Ψ & −1; see Fig. S1
for examples of these phases). These distinct solid phases
are expected theoretically [10] for on-lattice interacting
rhombi, and have been observed experimentally [15].

Results. We show in Fig. 1 the results of constant
pressure simulations of 768 noninteracting (εn = εs = 0)
regular rhombi. We plot as a function of density the ther-
mal average of the hexatic order parameter cos (6θij),
where θij is the angle between vectors pointing along
the long diagonals of rhombi i and j. The average is
taken over all pairs of particles. Long range hexatic order
emerges at densities of about 70%; such order is consis-
tent with a tiling in which particles point in the three di-
rections of a triangular lattice (simulation box snapshots
are shown in Fig. S2). Notably, the high-density solid
phase is not crystalline but random, possessing tiling or-
der Ψ ≈ 0 [18]. It has a high degree of orientational
order but no translational order. The random phase is
known from theoretical studies to possess critical fluc-
tuations in tile orientation characteristic of entropically-
stabilized ‘Coulomb phase’ systems [8]. Random tilings
are seen in the standard limiting case of regular rhombi
constrained to an underlying triangular lattice; the spon-
taneous emergence of similar order here, driven only by
rhombus shape, justifies the approximations inherent in
that limiting case.

We next verified that equipping rhombi with symmet-

ric (∆ = 1/2) ‘H-bond’ interactions allows them to self-
assemble, even at low densities, into a random tiling. In
Fig. 2 we show results from simulations in which inter-
acting rhombi (εs = 5.2) were allowed to deposit on a
substrate, with chemical potential chosen so that a dense
cluster of regular rhombi faced a free energy barrier of
about 10 kBT to its nucleation. Nuclei were grown us-
ing umbrella sampling. Nuclei of regular rhombi have a
value of Ψ slightly less than zero, showing them to be ran-
dom [16] but with a slight bias for the nonparallel binding
mode. This bias results from the fact that for rhombi in
an orientationally-ordered tiling, the inter-patch distance
between parallel neighbors exceeds, slightly, the inter-
patch distance between nonparallel neighbors. This bias
can be annulled by shifting patches slightly towards the
small internal angle (by contrast, a large shift exacer-
bates this bias and drives the emergence of nonparallel
order; see Fig. S3). Notably, assemblies display the topo-
logically interesting triangular defects seen in real- and
on-lattice networks [4] (a resulting tiling is shown in Fig.
S4).

However, perturbing the aspect ratio of rhombi away
from the regular value of A =

√
3 impairs their ability

to form a random tiling. In Fig. 2 we show that near-
regular rhombi still form clusters having values of Ψ close
to zero, an observation that validates the study of TPTC
on the lattice [4]. But sufficiently irregular rhombi favor
the parallel ordered phase, characterized by large posi-
tive Ψ. The geometrical reason for the emergence of this
phase is shown in the bottom panel of Fig. 2: the ran-
dom phase contains 3-particle ‘boxes’ of rhombi that knit
together domains of parallel tiles. Boxes form readily
when the large internal angle of the rhombus is 120◦, but
departures from this angle strain boxes and eventually
suppress their formation, driving the emergence of a par-
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 time 2165000, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 
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FIG. 3: Design space of ‘molecular rhombi’. Schematic phase diagram of aspect ratio A and patch placement ∆ (phase
boundaries are approximate). DFT calculations reveal that TPTC (right) corresponds to a nearly-regular rhombus whose
patches are placed near-centrally.

allel ordered phase. Notably, analog molecular rhombi
with larger aspect ratios than TPTC have recently been
shown to form biased random tilings with Ψ ≈ 0.2 [14];
our calculations suggest that geometric factors can ac-
count for the symmetry breaking leading to such phase
behavior. Suppressing box formation also increases the
work of formation (bottom right) of a cluster of N tiles.

The design space of ‘molecular rhombi’ therefore ad-
mits ordered and random tiled phases, as summarized in
Fig. 3. TPTC is well ‘designed’ as a random-tiling agent.
Our DFT calculations show binding modes that are par-
allel and 59.2◦ disposed, consistent with a rhombus as-
pect ratio A ≈

√
3.1, and a patch center ∆ for these mo-

tifs of 0.50. Both parameters lie well within the limits of
the random phase. More generally, we predict that tiling
order near the square-tile limit A = 1 is tetratic rather
than hexatic, and we predict the existence of a ‘checker-
board’ phase. We also predict the breakdown of order:
tiles cannot form dense assemblies when tile shape favors
parallel binding, but patch placement cannot accommo-
date it. This conflict defines the geometric limits within
which molecular rhombi tile, with the proviso that the
precise location of these limits will depend on the ratio
of molecular size and the range of H-bond interactions,
which we have represented only roughly.

Real molecules also possess interactions, such as van
der Waals- or solvent-mediated forces, that are less spe-
cific than hydrogen bonding. We have not represented
such effects, but we can demonstrate the potential impor-
tance of nonspecific forces. In Fig. 4 we show that a short

range rhombus-shaped attraction effects a bias in favor
of a nonparallel ordered tiling. Through this nonspecific
interaction, rhombi ‘see’ energetically their neighbors at
each vertex in a tiling. In tilings with perfect nonpar-
allel order each rhombus has ten such neighbors, five at
each corner of its long diagonal (inset bottom left). In a
random tiling, rhombi have fewer vertex neighbors (inset
top right), and a strong enough nonspecific interaction
induces a phase transition from the random phase to the
ordered one. In off-lattice simulations such an attrac-
tion can induce a nonparallel bias in tilings of regular
rhombi (with or without H-bond interactions), and in-
duce irregular rhombi to form patterns unlike any of the
known dense rhombus tilings (Fig. 4b). Recent experi-
ments suggest that forces other than molecules’ H-bonds
can dictate tiling order: TPTC forms random tilings with
a pronounced nonparallel bias (−0.5 . Ψ . −0.1) in cer-
tain solvents [14]. While our nonspecific interaction is
not a realistic representation of intermolecular forces, its
effect illustrates a possible mechanism for the establish-
ment of a similar bias.

We have explored rhombus tilings beyond the standard
limit of dimer coverings of the regular lattice, identifying
physical mechanisms that lead to the emergence of or-
dered and random phases. We have also made predictions
for novel behaviors that might be realized using ‘molec-
ular rhombi’. The methods described here can be used
to study the packing and self-assembly of a wide vari-
ety of tiles, aiding the search for molecular networks that
possess interesting properties such as quasicrystalline or-
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 time 0, eps_parallel =  0,  eps_sixty =  0,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =768, nrg = 0, n_parallel =646; n_60= 890; psi = 0.0591763 
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 particles =768, nrg = 0, n_parallel =126; n_60= 1410; psi = -0.75654 
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 particles =768, nrg = 0, n_parallel =66; n_60= 1470; psi = -0.869792 
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 time 0, eps_parallel =  0,  eps_sixty =  0,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =701, nrg = 0, n_parallel =18; n_60= 74; psi = -0.452143 

 time 0, eps_parallel =  0,  eps_sixty =  0,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =281, nrg = 0, n_parallel =4; n_60= 84; psi = -0.862443 

(a) (b)

εn

〈Ψ〉 εn

FIG. 4: Interactions other than H-bond attractions may act to select tiling phases. (a) We consider regular rhombi interacting
nonspecifically, initially arranged as a random tiling of a triangular lattice. We allow sampling of dense phases using the 3-
particle rotation algorithm (see SI); we plot the thermal average of the tiling order parameter Ψ as a function of εn, the strength
of the nonspecific attraction (peaked line is shifted and scaled variance of Ψ). This attraction favors high-order vertices of the
kind found readily in the nonparallel ordered tiling (inset bottom left: particle i has two lots of five vertex neighbors), and if
strong enough it destabilizes the random tiling. Inset top right: average number nn of pairwise nonspecific interactions made
by particles. (b) Self-assembly of regular and irregular rhombi driven by the nonspecific interaction. We show configurations
taken from dynamical trajectories of rhombi equipped with nonspecific attractions of fixed strength, for the cases A2 = 3, 5, 20
(clockwise from left). The nonspecific attraction favors the formation of tiling vertices, which for the regular rhombus leads to
the emergence of the nonparallel ordered tiling. However, as A departs enough from

√
3 the nonparallel ordered tiling cannot

exist. Open structures result.

der [17].
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