
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Geometrical Frustration and Static Correlations in a Simple
Glass Former

Benoit Charbonneau, Patrick Charbonneau, and Gilles Tarjus
Phys. Rev. Lett. 108, 035701 — Published 18 January 2012

DOI: 10.1103/PhysRevLett.108.035701

http://dx.doi.org/10.1103/PhysRevLett.108.035701


LJ12910

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Geometrical Frustration and Static Correlations in a Simple Glass Former

Benoit Charbonneau,1 Patrick Charbonneau,2, 3 and Gilles Tarjus3

1Mathematics Department, St.Jerome’s University in the University of Waterloo, Waterloo, Ontario, Canada
2Departments of Chemistry and Physics, Duke University, Durham, North Carolina 27708, USA

3LPTMC, CNRS-UMR 7600, Université Pierre et Marie Curie, bôıte 121, 4 Place Jussieu, 75005 Paris, France

(Dated: November 7, 2011)

We study the geometrical frustration scenario of glass formation for simple hard sphere models.
We find that the dual picture in terms of defects brings little insight and no theoretical simplifi-
cation for the understanding of the slowing down of relaxation, because of the strong frustration
characterizing these systems. The possibility of a growing static length is furthermore found to be
physically irrelevant in the regime that is accessible to computer simulations.
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The ubiquitous glass formation and jamming still puz-
zle physicists. How can molecular and colloidal sys-
tems slow down so abruptly without obvious structural
changes? In response to this conundrum, theoretical ap-
proaches inspired by spin-glass physics have long postu-
lated a role for a “hidden” static length associated with
the dynamical slowdown. Following the rigorous iden-
tification of a growing point-to-set length accompanying
diverging relaxation times in structural glasses [1–3], a se-
ries of “order agnostic” proposals for static correlations
in supercooled liquids have also recently flourished [4–6],
and their analysis is ongoing. Yet specifying a relevant
amorphous order parameter that captures these mate-
rials’ rich phenomenology while providing geometric in-
sights into the underlying microscopic mechanism is still
sought after. A scenario for growing geometrical order
proposed some time ago by Sadoc and Mosseri [7] as well
as by Nelson and coworkers [8] is often considered by
many to suit this purpose. In addition to encouraging
the enumeration of preferred local structures, e.g., [9], it
has indeed led to the development of a theoretical appa-
ratus for the glass transition based on geometrical frus-
tration [8, 10]. Yet, in spite of its marked impact on the
structural analysis of dense fluids, this proposal remains
largely untested in three-dimensional (3D) systems.

Geometrical frustration is canonically illustrated by
considering the behavior of spherical particles of diameter
σ. Because regular simplices (triangles in 2D, tetrahedra
in 3D, etc.) are the densest possible local packings of
spheres, they are expected to play a central role in liquid
organization, e.g., [11, 12]. In 2D Euclidean space, in-
teresting physics results from the fact that simplices can
assemble into the triangular lattice [8], and spatial cur-
vature frustrates the regular assembly of disks [13]. For
Euclidean space in dimension d ≥ 3 simplices cannot tile
space without defects, but in d = 3 they can form per-
fect icosahedra on a relatively gently curved space [14].
The defects that result from uncurving this singular space
back to the Euclidean variety can be understood by di-
mensional analogy. Each particle in a perfect 2D trian-
gular tiling of disks is part of six triangles. Curvature

results in irreducible disclinations that sit on disk cen-
ters and for which the coordination obtained by a De-
launay decomposition differs from six. Similarly, in 3D
each edge between nearest-neighbor pairs is shared by five
other tetrahedra; flattening space generates disclination
lines of “bond spindles” that are shared by q 6= 5 tetra-
hedra. Periodic arrangements of these disclinations form
the complex crystal structures known as Frank-Kasper
phases [15]. Yet even in amorphous configurations at

small frustration, the simple Voronoi polyhedra that ac-
commodate the presence of spindles with q 6= 5 pro-
vide topological constraints for the propagation of defects
from one particle to the next, which results in disclina-
tion lines [8]. A denser fluid, in which the proportion of
q = 5 spindles grows and conversely that of q 6= 5 spin-
dles shrinks, should thus see disclination defects play a
more important role. Disclination lines passing one an-
other correspond to activated events, possibly affected by
topological constraints [8]; the theoretical framework sug-
gests a causality between the dynamical slowdown and a
growing static, structural correlation length underlying
the fragility of the glass-forming fluid. In this letter, we
critically examine this proposal and find that, in spite
of its elegance, it does not hold for the system to which
it is more directly related, i.e., simple 3D hard spheres.
Through a variety of measures of static order, we also
consider alternate definitions of correlation lengths and
explore in what regime a growing static order could rea-
sonably be associated with a dynamical slowdown in the
regime accessible to computer simulations.

Testing this intrinsically geometrical theory on iden-
tical 3D hard spheres is problematic because nucleation
interferes with the slowdown, so the crystallization drive
must be reduced. In case the fluid structure were to sensi-
tively depend on the nature of these perturbations, we do
so in two different ways: (i) a 50:50 binary mixture with a
1.4:1 diameter ratio whose glass-forming properties have
been extensively characterized [16–18], and (ii) a sys-
tem of hard spheres with the smallest non-crystallizing
diameter polydispersity, 8.5% [19]. The average num-
ber of tetrahedra wrapped around a bond, q̄, lies within
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FIG. 1: Evolution of q̄ and (left inset) of the probability dis-
tribution p(q) with density. The statistical honeycomb limit
is given for reference. (right inset) Network of q = 6 spindles
(rods) at φ = 0.58.

two simple limits. First, all finite-density configurations
should have fewer tetrahedra per spindle than a Poisson
process (an ideal gas), where q̄ = 144π2/(24π2 + 35) ≈
5.228 [20]. Second, although in curved space the op-
timal number of simplices per bond can be as low as
q = 5, in Euclidean space a more stringent limit q̄ =
2π/ arccos (1/3) ≈ 5.104 is obtained from the fictitious
“statistical honeycomb” construction [14, 21]. Figure 1
shows that both densifying fluids present a growing poly-
tetrahedral character. The average spindle coordination
decreases, seemingly toward its optimal value, with in-
creasing packing fraction φ for both models, as does its
distribution p(q) (Fig. 1). The growing simplex order
is also quite different from that observed in the face-
centered cubic crystal phase. Because the structural
properties of the two models are robustly similar, we only
consider (i) for the rest of the analysis.

Surprisingly, even for the densest systems equilibrated
the disclination network remains highly branched, with
multiple defect lines stemming from each vertex. The
inset of Fig. 1 illustrates this situation for the q = 6
spindle network. The typical spacing between defect

spindles ξdefect ≡ c
−1/3
defect, using a defect concentration

cdefect ≡
∑

q cq(q − 5)2 that puts more weight on higher-
order defects, indeed grows by no more than 1− 2% over
a density range over which the relaxation time goes up
by several decades. Extrapolating the results to higher
densities using the statistical honeycomb limit further in-
dicates that the growth of ξdefect remains small over the
entire accessible amorphous regime φ . 0.65. Actually,
polytetrahedral order is bound to saturate as a result of
the intrinsic frustration of Euclidean space. The satura-
tion length corresponding to the maximal spatial exten-
sion of simplex order estimated from the radius of sphere
inscribing the gently curved space from which this argu-
ment derives is ≃ 1.59σ [14]. Alternatively, the typical
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FIG. 2: Long-time limit of the overlap. (inset) Time t evo-
lution of the overlap for cpin = 0.11, 0.45, 0.68, 0.74, and
0.79, from left to right, in (βmσ2)−1/2 units with mass m,
the larger particle σ and inverse temperature β set to unity.

distance between defects in an ideal tetrahedral structure
threaded only by q = 6 spindles is only ξdefect ≃ 0.99σ,
although it is worth noting that the average distance be-
tween spindles itself is but ≈ 0.3σ. A similar result is
obtained for the spatial correlations associated with frus-
trated local order through an analysis of the spatial de-
cay of the bond-orientational order correlation function
G6(r) [22, 23]. No matter how it is precisely defined,
the associated correlation length ξ6 does not increase by
more than a few percents. Even in 3D, hard spheres are
therefore sufficiently frustrated to make the dual picture
of amorphous particle packings in terms of spindle defects
rather uneconomical at all densities.
In order to remove any possible doubt as to whether al-

ternative static lengths due to tetrahedral or other order
types are present or not, we turn to the order-agnostic
penetration length ξp [24, 25], which, like the point-to-
set length ξPS [4], characterizes the influence of boundary
conditions and is expected to diverge with the relaxation
time [2]. It is obtained by pinning a random selection
of particles from an equilibrated fluid configuration, and
measuring the overlap between the initial and final con-
figurations after a long time t has elapsed,

Q(c) = lim
t→∞

∑

i〈ni(0)ni(t)〉
∑

i〈ni(0)〉
, (1)

where ni is the occupancy of a spatial cell whose volume
is similar to that of the smaller particles in the system
in order to prevent multiple occupancy [24]. Subtracting
the random overlap contribution 〈ni〉 leaves a quantity
that grows from low to high as the pinning concentra-

tion cpin increases (Fig. 2); the crossover is ξp ∼ c
−1/3
pin .

Operationally, we define ξp as the value of the average
distance for which the overlap falls below 0.18 (Fig. 2).
The extracted length is not very sensitive to this choice,
provided it is intermediate between low and high overlap.
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FIG. 3: Various static lengths rescaled to unity at φ = 0.40
(ξ0) together with the lower bound from Eq. (2) ξbound and
the dynamic length [17]. (inset) Measures of dynamical slow-
down. Lines are guide for the eyes.

We stress that focusing solely on the low-overlap regime
provides no information on ξp as it only depends on the
standard pair correlation function and therefore on trivial
two-point correlation lengths ξ2. This result, which can
be checked explicitly by considering the linear response
to a vanishingly small cpin, remains true so long as one
remains in the low overlap perturbative regime [26]. It
also casts some doubt on the relevance of a recently pro-
posed scaling [27], where the observed linear dependence
on concentration suggests instead that only trivial static
lengths are probed.
Figure 3 shows that the penetration length ξp increases

only very modestly over the dynamically accessible den-
sity range. For sake of comparison, we display in Fig. 3
an estimate of ξ2 evaluated from the pair correlation
function g(r), which, as is well known, changes only
slightly with density. The penetration length increases
only about 20% more than ξ2. (Artificially breaking
down structural order into radial and orientational con-
tributions suggests that the latter is at most comparable
to the latter over the density range studied, further sup-
porting the spindle analysis.) Note that in view of the
small variation of all the static lengths, ξdefect, ξ6, ξ2
and ξp, trying to devise a crisper measuring procedure
is unnecessary as it will not qualitatively alter the con-
clusions. Strikingly, the “dynamic length” ξdyn charac-
terizing the spatial correlations in the dynamics and as-
sociated with dynamical heterogeneities grows markedly
over the same density range. Whereas the change in the
static length is measured in fractions of their low-density
value, ξdyn grows by a factor of almost 7 when reaching
φ = 0.59 [17]. The diffusivity D and the structural re-
laxation time τ meanwhile change by about 4 orders of
magnitude (Fig. 3).
Although the above results may come as no surprise to

those who believe the dynamical slowdown to be a purely
kinetic phenomenon involving no growing static length

scale, it is nonetheless worth checking whether one does
not violate the bound between relaxation time and static
correlation length put forward by Montanari and Semer-
jian [2], τ . τ0 exp

(

B ξ3PS

)

, where τ0 is a constant setting
the microscopic time scale. The coefficient B depends on
density (or temperature for a glass-forming liquid) and
is such that when ξPS ∼ σ the right-hand side describes
the “noncooperative dynamics” of the model [3]. Using
an Arrhenius-like argument for activation volumes [28],
we note that, all else being equal, higher pressures triv-
ially rescale the free-energy landscape and thereby slow
the dynamics. For a hard-sphere fluid, one then expects
B ∝ βP where P is the pressure. It should be stressed
that the upper bound of τ diverges with the pressure even
in the absence of any growing ξPS, as when approaching
T = 0 for an Arrhenius temperature dependence. In the
low and moderate density fluid, the relaxation time in-
deed follows τ(φ) ≃ τlow(φ) = τ0 exp[KβP (φ)] with K a
density-independent constant. One then finds that

(

log[τ(φ)/τ0]

log[τlow(φ)/τ0]

)1/3

.
ξPS(φ)

ξPS,0
, (2)

where ξPS,0 is the low-density limit of ξPS. Equation (2)
thus provides a lower bound for the growth of a static
length imposed by the dynamical slowdown.

To assess whether the above bound is satisfied or not,
one needs an estimate of ξPS. The direct approach would
be to consider the effect of pinning the boundary of a
spherical cavity on the fluid inside, but one may reason-
ably expect that the penetration length studied above
gives a rough estimate of ξPS. Near a random-first-order
transition or near any first-order transition ξPS ∼ ξ3p [29],
but far from such transitions, which is the case studied
here, one expects ξPS ∼ ξp. In any case, as seen in Fig. 3,
the bound given by Eq. (2) increases only slowly in the
dynamically accessible domain and is already satisfied by
ξp. Note that this moderate growth of the bound further
illustrates that hard spheres are not in fact very “fragile”
in the regime up to φ = 0.59, showing only a limited de-
viation with respect to the low-density behavior, which
is in line with what is found for other simple fluids, such
as the Lennard-Jones glass-forming liquids [30]. These
observations may well correlate with the fact that most
3D fluids of spherical particles are strongly frustrated in
the sense discussed above.

These results indicate that the growth of a static length
is not the controlling factor behind the relaxation slow-
down in the range of density considered. This finding
points to a mechanism for the slowdown that is either
essentially “noncooperative”, or akin to that predicted
by the mode-coupling theory (MCT) [31, 32]; in both
cases, the growth of a dynamic length is not accompa-
nied by that of a static length. We cannot, however,
draw any general conclusion on this question beyond this
regime. In thermodynamic-based theories [10, 33], it is at
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these higher densities (or lower temperatures for a liquid)
where cooperative behavior becomes dominant, and the
dynamical slowdown is predominantly controlled by the
growth of a static length. This regime is unfortunately
mostly beyond present-day computer resources [34]. A
modest indication that a crossover takes place may, how-
ever, be given by the data for ξp and the bound, which
both appear to display a steeper increase near φ = 0.59.
We have first shown that 3D hard spheres, like d > 3

hard spheres and many 3D simple glass formers, are too
strongly frustrated for the dual picture in terms of de-
fects [8] to bring any useful simplification. One may
wonder if there exist other liquids with a different type
of locally preferred order for which frustration is weaker
and the picture can be put to work. Whereas this frustra-
tion regime can be achieved in 2D by curving space [13],
no such clear-cut example of simulation-accessible glass
formers in 3D Euclidean space has yet been devised. Sec-
ond, we have shown that within the regime accessed here
static lengths grow very slowly, yet in a way that is com-
patible with the bound recently put forward between re-
laxation time and static length. For systems similar to
hard spheres, these results severely constrain the type of
ordering that can develop and place serious doubts on the
pertinence of local-order analysis in the moderately vis-
cous dynamical regime. The dynamic length’s significant
increase points instead to a decoupling between the in-
creasingly heterogeneous character of the dynamics and
its cooperative origin in terms of structural or thermo-
dynamic quantities. A challenge would be to search for
a possible crossover at still higher densities.
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