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Abstract

Dynamical trajectories on the boundary in state space between laminar and turbulent plane

channel flow – edge states – are computed for Newtonian and viscoelastic fluids. Viscoelasticity

has a negligible effect on the properties of these solutions, and at least at low Reynolds number,

their mean velocity profiles correspond closely to experimental observations for polymer solutions

in the maximum drag reduction regime. These results confirm the existence of weak turbulence

states that cannot be suppressed by polymer additives, explaining the fact that there is an upper

limit for polymer-induced drag reduction.
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When flow in a pipe or channel turns turbulent, its frictional resistance increases abruptly.

Introducing long-chain polymer additives can significantly reduce this resistance [1–3]. This

polymer drag reduction (DR) effect saturates at high levels of viscoelasticity: an asymptotic

upper limit is reached that is insensitive to polymer concentration, molecular weight or

chemical structure. In this limit, mean velocity profiles Um(y) under different conditions

collapse onto the log-law relationship reported by Virk: U+
m = 11.7 ln y+ − 17.0 [1]. (The

superscript “+” denotes quantities nondimensionalized in inner velocity and length scales
√

τw/ρ and η/
√
ρτw: τw is the time- and area-averaged wall shear stress, η and ρ are the fluid

viscosity and density, and y is the distance from the wall.) This so-called maximum drag

reduction (MDR) phenomenon remains the most important unsolved problem in viscoelastic

turbulence. Additionally, it has long been hoped that understanding drag reduction in

polymer solutions might lead to new insights into how to reduce energy consumption in

Newtonian fluids as well.

Recent studies [4, 5] revealed that in both Newtonian and viscoelastic flows, the turbu-

lent self-sustaining process exhibits distinct phases in its dynamics. In the Newtonian limit,

so-called active turbulence dominates, where the flow structures show strong vortices and

wavy streaks. On rare occasions, intervals with weak turbulence activity show up: flow

structures during these hibernating turbulence intervals resemble MDR turbulence, showing

features [6–8] such as weak streamwise vortices, almost streamwise-invariant streaks and an

instantaneous mean velocity profile that approaches the Virk log-law profile. With increasing

viscoelasticity, active intervals are shortened while hibernating intervals are virtually unaf-

fected. Accordingly, hibernation occurs more frequently, leading to flows increasingly similar

to MDR. Related results have recently been found in boundary layer flow [9]. These results

indicate that MDR might be associated with a type of weak turbulence already existing in

Newtonian flow that only becomes unmasked at a high level of viscoelasticity as suggested

by [2]. Furthermore, the dynamics of hibernating turbulence are consistent with suggestions

that turbulence in the MDR regime is somehow “transitional” [3, 9, 10] or “marginal” [11].

In a well-defined sense, the weakest, most marginal form of self-sustaining turbulence is

a flow that asymptotically in time approaches neither the turbulent state nor the laminar

state – an edge state [12–14]. An edge state lies on an invariant surface in state space

that is a generalization of a basin boundary between two attractors to the situation where

one attractor might be replaced by a very long-lived transient; there is evidence that this
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is the situation with turbulence in some cases [15]. Lebovitz [14] calls such a surface a

“weak” basin boundary. Initial conditions starting on one side of the edge surface develop

into turbulence, those on the other side directly decay to laminar flow, and initial conditions

on the surface itself remain on the surface, asymptotically approaching an edge state. As

such, edge states are saddle structures in state space. These states have attracted much

recent attention [12, 16–18]. Past studies have focused on laminar-turbulent transition in

Newtonian flows. In the present study, we address on the connection between the edge and

drag reduction by polymers. In particular, we address two key questions: (1) How does

viscoelasticity affect the edge? (2) Is there any similarity between the edge and MDR?

We study plane Poiseuille flow at fixed pressure drop. The x, y and z coordinates are

aligned with the streamwise, wall-normal and spanwise directions, respectively. No-slip

boundary conditions apply at the walls and periodic boundary conditions apply in x and z;

the periods in these directions are denoted Lx and Lz. The governing equations are:

Dv

Dt
= −∇p+

β

Re
∇2

v +
2 (1− β)

ReWi

b+ 5

b
(∇ · τ p) , (1)

∇ · v = 0, (2)

Wi

2

(

Dα

Dt
−α ·∇v − (α ·∇v)T

)

= −τ p, (3)

τ p =

(

α

1− tr(α)
b

− b

b+ 2
δ

)

. (4)

Here (1) and (2) are conservation of momentum and mass. The polymer contribution is

captured by the FENE-P constitutive equation ((3) and (4)) [19]: τ p is the polymer stress

and α is the polymer conformation tensor. Velocities and lengths are scaled with Newto-

nian laminar centerline velocity U and half-channel height l. Time t is scaled with l/U and

pressure p with ρU2. Reynolds number Re ≡ ρUl/η (where η is the total zero-shear viscos-

ity), Weissenberg number Wi ≡ 2λU/l (λ is the polymer relaxation time), viscosity ratio

β ≡ ηs/η (ηs is the solvent viscosity), and b is the polymer extensibility: max (tr (α)) < b.

Stress is scaled with the shear modulus in the limit b → ∞. All results are obtained with

box size (L+
x , L

+
z ) = (720, 140); time steps are δt = 0.02 for Re = 3600 (friction Reynolds

number Reτ =
√
2Re = 84.85) and δt = 0.01 for Re = 14400; for viscoelastic runs β = 0.97

and b = 5000. Additional details are reported elsewhere [20].
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FIG. 1. Time series of an edge trajectory at Re = 3600,Wi = 28. Thick lines: area-averaged wall

shear rate; thin lines: bulk-average tr(α).

To compute edge states, we follow the same method as previous studies [12, 18]. Using

any point in the state space as the initial condition, a short direct numerical simulation

(DNS) will tell which side of the edge surface it belongs to: if a strong turbulence burst is

found the point is on the turbulent side; if the solution decays directly to the laminar state

it is on the laminar side. Given two points on opposite sides of the edge surface, denoted vT0

and vL0, a line connecting them in the state space v(θ) = θvT0 + (1− θ)vL0 must intersect

the edge at least once. Therefore through repeated bisection, one can always find a pair

of points v(θT ) and v(θL) that are arbitrarily close to each other, yet located on opposite

sides of the edge. In this case both points are sufficiently close to the edge that dynamical

trajectories starting from them will stay close to the edge for a long time before diverging

from one another. A next round of bisections is then started using a new pair vT0 and vL0

taken from trajectories of the previous round. This process is repeated and the solutions

from each iteration are concatenated to form an approximation to a trajectory on the edge.

In this study each round of bisection is stopped when θT −θL 6 10−8; a new round is started

when the bulk average turbulent kinetic energy differs by a magnitude of 10−6−10−5 between

the trajectories. Computations are continued until the results are statistically stationary.

A time series of area-averaged wall shear rate 〈∂vx/∂y〉w for a viscoelastic edge state at

Re = 3600,Wi = 28 is shown in Fig. 1. Strong asymmetry across the channel center is

observed in all our solutions; we have plotted the wall shear rate at the side with stronger

velocity fluctuations. Trajectories on the edge are much less chaotic than regular turbulence

(cf. [4, 5, 20]). Intervals with high 〈∂vx/∂y〉w and large temporal variation alternate with
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FIG. 2. (a) Reynolds shear stress profiles. Lines with markers + and ∗ are instantaneous profiles

for instants (I) and (II) in Fig. 1(b)), scaled in ∗-units; others are time averages, scaled in +-

units. Arrows mark the positions of the channel centers for the Newtonian time-average profiles.

(b) Polymer conformation profiles(Re = 3600). Solid lines and left ordinate: mean (area- and

time-averaged) profiles of tr(α); dashed lines and right ordinate: mean αyy + αzz.

those with low 〈∂vx/∂y〉w and almost nonexistent variation. The Newtonian case is very

similar, although the average interval between successive peaks is shorter. Variations in

the bulk (volume-averaged) tr(α) are also shown in Fig. 1; they are in phase with those of

〈∂vx/∂y〉w.

Asymmetry of flow structures is clearly reflected in the Reynolds shear stress profiles

(Fig. 2(a)). Therefore, in presenting results, we will define the y-axis so that the wall

nearest the more substantial dynamics is at y+ = 0. These profiles are all significantly lower

in magnitude than regular turbulence, which has a maximum of≈ 0.6 [5, 20]. The Newtonian

Re = 3600 profile is even smaller compared with magnitudes within hibernating turbulence.

Note that the smallness of Reynolds shear stress is among the major observations during

MDR [8, 21–23]. An edge solution for Re = 14400 has also been computed, and strong

asymmetry is also observed. In addition to the primary peak found at y+ ≈ 35, where

the Re = 3600 profile reaches maximum, a secondary peak is found at y+ ≈ 75, indicating

nontrivial structure further from the wall than in the Re = 3600 case. The viscoelastic

result at Re = 3600 and Wi = 28 is also plotted; it almost collapses onto the corresponding

Newtonian profile. Note that for the same Re, β and b, the onset Wi for DR found in

an earlier study (focusing on dynamics in the turbulence basin) is ≈ 10 [5]; at Wi = 28,

viscoelasticity is strong enough to cause not only substantial DR, but also qualitative changes

in flow statistics and structures [5, 20]. It is striking that the same level of viscoelasticity

does not affect the results on the edge.
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FIG. 3. Streamwise velocity (range 0.2 (blue)-0.7 (red)) on the xz-plane at y+ = 25 for (a) instant

(I) and (b) instant (II) of Fig. 1.

Instantaneous profiles of Reynolds shear stress are also shown in Fig. 2(a), for two instants

selected from the edge solution at Wi = 28, as marked in Fig. 1. These are nondimensional-

ized in inner scales based on instantaneous wall shear stress τ ∗w (instead of its time average

τw); correspondingly, superscript ∗ is used instead of +. Instant (I) is taken near a peak

of 〈∂vx/∂y〉w; here we also observe a much higher −〈v′+x v′+y 〉 magnitude than instant (II),

which is taken in the phase with lower 〈∂vx/∂y〉w.

Flow fields for these instants are shown in Fig. 3. Instant (I), which has stronger tur-

bulent activity, shows a shorter characteristic wavelength in the z direction than instant

(II). Low- and high-speed streaks have weak dependence in the x direction in both instants

(Figs. 3(a)(b)). At (I) some variation is still observed, which however occurs over a much

longer wavelength than in active turbulence (typically ≈ 300 [4, 5, 20]); at (II) variation

along the x-axis is barely noticeable. The presence of streamwise vortices is apparent from

the structure of the streamwise velocity components. At instant (I) these vortices have

similar strength as those in hibernating turbulence, which are a few times weaker than in

active turbulence; at instant (II), their strength is an order of magnitude weaker than at

(I). Extremely weak vortices and nearly streamwise-invariant streaks are observed in both

MDR [6–8] and hibernating turbulence [4, 5].

Mean velocity profiles for these two instants as well as time-averaged profiles are plotted

in Fig. 4. The profile of instant (II) is slightly above the Virk MDR asymptote, also shown on

the plot, while that of (I) is well below; consequently the time average profile for Re = 3600

and Wi = 28 is remarkably close to it. Comparing time average profiles for all Re = 3600

cases, we see that viscoelasticity has virtually no effect on the mean velocity: Newtonian and

viscoelastic profiles from different Wi overlap one another very closely and are thus difficult
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FIG. 4. Mean velocity profiles (half channel). Lines with markers are instantaneous profiles (for

instants (I) and (II) on Fig. 1), in ∗-units; lines without markers are time average profiles, in

+-units.

to distinguish on the plot. Recall from Fig. 2(a) that insensitivity to viscoelasticity is also

found in Reynolds shear stress.

The origin of the insensitivity of edge solution to viscoelasticity is seen upon examination

of the polymer conformation profiles, Fig. 2(b). Although tr(α) increases with Wi, this

increase is almost completely driven by the mean shear. Indeed, for simple shear at the Wi

values indicated (16, 20 and 28), the values of tr(α) are 398, 560 and 877, respectively. The

values at the wall for the edge states are only slightly larger than these. Furthermore, noting

that the equilibrium magnitude of αyy + αzz is 2b/(b + 5) ≈ 2, we see that the polymer is

essentially undeformed in y and z. Polymer stretching in these directions is the main cause

of vortex suppression and DR in near-wall turbulence [24–26], and the lack thereof in the

edge solution indicates why the edge structures are so weakly affected by viscoelasticity.

The edge states are only barely three-dimensional and are thus almost completely unable to

generate the exponential stretching of fluid elements required to strongly deform polymer

chains. This very weak three-dimensionality is also seen in the lower-branch exact coherent

states found by Wang et al. [27], which almost certainly also live on or near the laminar-

turbulent boundary. Furthermore, these traveling waves have vanishing Reynolds shear

stress in the limit of high Reynolds number – small Reynolds shear stress is a key feature of

drag reduction and plays an important role in phenomenological models of it [11]. Based on

the Wang et al. results and those here, it may be that the Reynolds shear stress vanishes

at MDR as Re → ∞.
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Discussion so far has focused on Re = 3600, where the turbulent flow structures are

relatively simple. Figs. 2(a) and 4 show results for a Newtonian edge state at Re = 14400.

Specifically, consider the mean velocity profile shown in Fig. 4. In contrast to the Re = 3600

result, the profile at Re = 14400 remains close to the Virk asymptote up to y+ ≈ 30, but

exceeds it at larger distances. This result indicates that at this Reynolds number the edge

dynamics are even more weakly turbulent than the Virk MDR dynamics. This result is

consistent with the bifurcation analysis study of Pringle et al. [28], which shows that as Re

increases, a multitude of new traveling wave solutions come into existence. As new solutions

arise, the position of the edge in state space can change discontinuously, so an invariant set

that lies on the edge at a low Reynolds number may no longer be on the edge at higher

Reynolds number. Much further work remains before the Reynolds number dependence of

the laminar-turbulent boundary is understood.

The key qualitative conclusion from this study is that asymptotic trajectories on the

laminar-turbulent boundary at low Reynolds number are insensitive to viscoelasticity –

they are only weakly three-dimensional and are thus ineffective at stretching polymers. Fur-

thermore, the mean velocity profile for the Newtonian edge state quantitatively agrees with

the experimentally observed profile for polymer solutions at the maximum drag reduction

asymptote. These conclusions present a solution to the long-standing question of why there

is an upper limit for DR and why it is universal with respect to polymer properties. Con-

ventional “active” turbulence generates substantial polymer stretching, which in turn acts

to weaken the turbulence, driving the dynamics toward the laminar-turbulent boundary –

hibernation intervals are excursions toward the edge (necessarily transient as edge states are

saddles in state space), as evidenced by the strong similarity in flow structure between the

two phenomena. From the present work we now see that the weakest form of self-sustaining

turbulence, the edge state, is not affected by polymer, so we can also conclude that that

there is a region in the state space close to the laminar-turbulent boundary where turbulent

motion is too weak to sufficiently stretch polymers and is thus insensitive to them. This

region forms a band in the state space that is invariant to viscoelasticity, determining the

upper limit of polymer-induced DR.

From a broader perspective, this work bridges two important areas, laminar-turbulent

transition and drag reduction by polymers, which have generally been viewed as separate. In

addition, if MDR is indeed closely connected to Newtonian flow states, as strongly indicated
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in this study and previous ones [4, 5, 9], achieving high levels of DR with flow control instead

of polymer additives might be a realistic goal.
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