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Measurements of the Nusselt number Nu and of a Reynolds number Reeff for Rayleigh-Bénard
convection (RBC) over the Rayleigh-number range 1012 <

∼
Ra <

∼
1015 and for Prandtl numbers Pr

near 0.8 are presented. The aspect ratio Γ ≡ D/L of a cylindrical sample was 0.50. For Ra <
∼

1013

the data yielded Nu ∝ Raγeff with γeff ≃ 0.31 and Reeff ∝ Raζeff with ζeff ≃ 0.43, consistent
with classical turbulent RBC. After a transition region for 1013 <

∼
Ra <

∼
5 × 1014, where multi-

stability occurred, we found γeff ≃ 0.38 and ζeff = ζ ≃ 0.50, in agreement with the results of
Grossmann and Lohse [1] for the large-Ra asymptotic state with turbulent boundary layers which
was first predicted by Kraichnan [2].

In a fluid between horizontal parallel plates and heated
from below, turbulent convection (known as Rayleigh-
Bénard convection or RBC) occurs when the temperature
difference ∆T = Tb−Tt between the bottom (Tb) and top
(Tt) plates is sufficiently large [3, 4]. When a dimension-
less measure of ∆T known as the Rayleigh number Ra
exceeds a typical value Ra∗ = O(1014) [5, 6], the sys-
tem is expected to undergo a transition. Below Ra∗ the
turbulent heat transport is limited by laminar boundary
layers (BLs) below the top and above the bottom plate.
Above Ra∗ the shear applied to the BLs by the turbulent
interior is expected to rendered the BLs turbulent as well
[1, 2, 7], thus leading to a different heat-transport mech-
anism. The state above Ra∗ is believed to be asymptotic
in the sense that it will prevail as Ra diverges. For that
reason it has been referred to as the “ultimate regime”
[8, 9]; we shall call it the ultimate state (we shall refer to
turbulent RBC below Ra∗ as the “classical” state). Aside
from the intrinsic interest in the physics of this system,
an extrapolation of the properties from typical experi-
mental ranges Ra <∼ 1012 [3] to Ra ≃ 1020 and higher,
which is relevant to geo/astrophysical systems, requires
an understanding of the ultimate state.

Over a decade ago Chavanne et al. [8–10] measured
the Nusselt number Nu(Ra) (the dimensionless effective
thermal conductivity) up to Ra ≃ 1015 for a cylindrical
sample of aspect ratio Γ ≡ D/L = 0.50 (D is the diame-
ter and L the height) using fluid helium near its critical
point at about 5 K and 2 bars. Their data reveal a transi-
tion in Nu(Ra) near Ra = 2×1011 which they interpreted
as the transition near Ra∗. However, their Ra at the tran-
sition was much lower than the expected Ra∗ = O(1014)
[5]. For this and other reasons [11] it seems unlikely to
us that their BLs underwent the transition to turbulence
characteristic of the transition from the classical to the
ultimate state. However, the authors of Refs. [9] and

[12] have a different interpretation [13] and still claim to
have observed the ultimate-state transition. Also about a
decade ago, Niemela et al. [14–16] measured Nu(Ra) up
to Ra ≃ 1017 in a nominally equivalent experiment, and
found no transition. Numerous other low-temperature
experiments were conducted for Γ = 0.50 [17–20], espe-
cially by Roche et al. [12]. Some showed a transition
and others did not. For the reasons given [11] it seems
unlikely to us (but, we are told [13], not to the authors
of Refs. [9] and [12]) that the BL transition to turbulence
associated with the ultimate state was involved in them.

Here we report measurements of Nu(Ra) and of a
Reynolds number Reeff (Ra) (to be defined explicitly be-
low) at close to ambient (as opposed to cryogenic) tem-
peratures. Both Nu and Reeff revealed a transition over
the same range of Ra; this range spanned more than a
decade from Ra∗1 ≃ 1013 to Ra∗2 ≃ 5 × 1014 [6]. For
Ra ≤ Ra∗

1
we found Nu ∝ Raγeff with γeff ≃ 0.31 and

Reeff ∝ Raζeff with ζeff ≃ 0.43, consistent with numer-
ous measurements and with predictions for classical RBC
below Ra∗ (cf. [3]). For Ra > Ra∗

2
we found γeff ≃ 0.38

and ζeff = ζ ≃ 0.50, in agreement with predictions for
the ultimate state [1]. For Ra∗

1
< Ra < Ra∗

2
Reeff

followed a non-monotonic and not always unique com-
plex path. The observed transition range (as opposed to
a characteristic value of Ra∗) is not surprising since the
BLs and the shear applied to them by the turbulent bulk
are known to be spatially inhomogeneous [21]. The loca-
tion of this range along the Ra axis is roughly consistent
with the expected values of Ra∗ [5] for a shear instability
of the BLs. The multi-stability revealed by Reeff in the
transition range suggests that the transition is discontin-
uous in the sense that, for instance, Reeff on the branch
below and the branch above the transition do not evolve
continuously one into the other. Further evidence for a
discontinuous transition comes from an extrapolation of



2

Reeff in the ultimate state to smaller Ra, which meets
the classical branch at Ra ≃ 4 × 1012, i.e. well below
the transition range between the two states. We believe
that our measurements revealed the transition from clas-
sical RBC to the ultimate state, and that they show this
transition to be discontinuous.

A large cylindrical sample of height L = 2.24 m and
diameter D = 1.12 m known as the High-Pressure Con-
vection Facility II (HPCF-II) was placed in an even larger
pressure vessel known as the “Uboot of Göttingen” at the
Max Planck Institute for Dynamics and Self Organization
in Göttingen, Germany [22, 23]. The Uboot and HPCF-
II were filled with the gas sulfur hexafluoride (SF6) at
pressures up to 19 bars. The HPCF-II was completely
sealed, except for a 2.5 cm inner-diameter tube which
passed through the sidewall at mid height and permitted
the gas to enter the HPCF-II from the Uboot. One tube
end was accurately flush with the inside of the wall and
the other end terminated in a remotely operable valve.
Once filled with the valve open, the desired temperatures
of the top and bottom plates were established, and after
equilibration for about 8 hours the valve was closed and
all desired measurements were made.

The Prandtl number Pr ≡ ν/κ (ν is the kinematic
viscosity and κ the thermal diffusivity) was 0.79 (0.86)
near Ra = 1012 (1015). The measurements were made
at several mean temperatures Tm = (Tt + Tb)/2 and
at various pressures. The Rayleigh number is given by
Ra = αg∆TL3/κν. Here the isobaric thermal expansion
coefficient α, as well as κ and ν, were evaluated at Tm,
and g is the acceleration of gravity.

There was a small effect of Tm − TU on Nu which
is described in Supplementary Material submitted with
this Letter, but the overall shape of Nu(Ra) was not
influenced by Tm − TU . The reduced Nusselt numbers
Nured ≡ Nu/Ra0.312 obtained with Tm − TU <∼ −3K
are shown as solid black circles in Fig. 1. For Ra <
Ra∗1 ≃ 1013 they are described well by a power law with
γeff = 0.312. As can be seen in the figure, that power
law agrees extremely well with data from [14–16] (stars,
red online) for 109 <∼ Ra <∼ 3× 1012, and with data from
[9] (small open circles, blue online) for 109 <∼ Ra <∼ 1011.
It also agrees well with recent DNS results [24] (open
circles with plusses and error bars, purple online). For
Ra >∼ 1013 the slope of our Nured(Ra) in the logarithmic
plot, corresponding to γeff − 0.312, gradually increased
with increasing Ra and reached values corresponding to
γeff ≃ 0.38 at Ra = Ra∗2 ≃ 5 × 1014. The value of γeff
above Ra∗

2
is consistent with the prediction for the ulti-

mate state [1, 2, 7]. An extrapolation from the largest-Ra
data of a power law with γeff = 0.38 (solid slanting line
in Fig. 1a) yields an estimate for a transition point of
Ra∗ ≃ 1.4× 1014.

The data of Niemela et al. [14–16] also show a slight
increase of Nu above the Ra0.312 dependence, starting
at Ra just below 1013. However, they do not seem to
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FIG. 1: Nured ≡ Nu/Ra0.312 as a function of Ra for the
“closed” sample. Black solid circles: Tm − TU <

∼
−3 K. Black

open circles: Tm − TU >
∼

+2 K. Open squares (blue online):
Nured of the open black circles multiplied by 1.04. Open
diamonds (red online): Ra of the open squares divided by
3.7. Solid line (blue online) through the data at the largest
Ra corresponds to γeff = 0.38. Vertical dotted lines: Ra∗1 =
1.3× 1013 and Ra∗2 = 5× 1014. Small stars (red online): Ref.
[14]. Small open circles (blue online): Ref. [9]. Circles with
plusses and error bars (purple online): DNS [24].

have the resolution to clearly reveal a transition. Indeed
the original authors interpreted them in terms of a single
power law with a classical exponent γeff ≃ 0.32 [16] up to
the highest Ra of their experiment. The Chavanne et al.
data [9] clearly show a transition near Ra = 2×1011, but
its origin is still unknown to us. The DNS data [24] do
not show any transition up to their largest Ra = 2×1012.

For the determinations of Reeff , two thermistors were
mounted, one above the other and separated by r0 = 3.0
cm, at an average height L/4 above the bottom plate.
The thermistors were placed about 1 cm from the side
wall inside the sample. They were used to measure the
local temperatures at a rate of 40 Hz, and it was assumed
that temperature locally is a passive scalar so that its
correlation function is the same as that of the velocity.
The two time auto-correlation functions C(0, τ) and the
cross-correlation function C(r0, τ) were determined with
high precision by averaging over time intervals of many
hours for a given data point. The correlation functions
were used to determine Veff =

√
U2 + V 2 and the cor-

responding Reeff = VeffL/ν, using the elliptic approx-
imation (EA). The EA was derived from a systematic
second-order Taylor-series expansion of the space-time
velocity correlation function [25, 26] and is well supported
by experimental data [27–29]. The contribution U is the
time-averaged vertical velocity component which turns
out to be small compared to V , and V is the sum of v0
[v2

0
= 2

∫

E(k)dk and E(k) is the energy spectrum of the
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FIG. 2: a): Nu/Ra0.312, b): Reeff/Ra0.5, and c):
RePr0.75/Ra0.5, as a function of Ra. Different symbols in
a) and b) correspond to different pressures and Tm and thus
different Ra ranges. Squares with stars (purple online) in b):
Tm − TU > 2K; all others in a) and b): Tm − TU < −3K.
Solid line (purple online) in a): Nu ∼ Ra0.38 and in b):

Reeff = 0.0439Ra1/2. Dashed line (red online) in a): Nu =
0.105Ra0.312 and in b): Reeff = 0.407Ra0.423. Black vertical
dotted lines in a) and b): Ra∗1 and Ra∗2 as in Fig. 1. Vertical
short dashed line in c): approximate location of the transi-
tion indicated by the data of [9] and shown in Fig. 1b. Thin
short-dashed lines in (b) are guides to the eye and indicate
the paths followed by the data. Solid squares (red online) in
c): from [9]. Open squares (red online) in c): from [12]. Large
solid (open) circles (blue online) in c): Reeff (ReU ≡ UL/ν)
from this work, classical state. Small open circles in c): this
work, transition region. Solid (open) diamonds (purple on-
line) in c): Reeff (ReU ) from this work, ultimate state. Solid
line (blue online) in c): Reeff = 0.252Ra0.434/Pr0.750.

velocity] and of a very small contribution proportional to
the local shear. A separate evaluation of U , V , and v0 is
possible as well (see, for instance, [27]).

In Fig. 2b we show results for Reeff/Ra
1/2. The data

fall into distinct groups. At relatively small Ra < Ra∗
1

they are described well by the long dashed line (red on-
line), which corresponds to Reeff = 0.407Raζeff with
ζeff = 0.423. This classical state continues to exist up
to Ra∗2 ≃ 5 × 1014. For Ra >∼ Ra∗2 the data are con-

sistent with Reeff = 0.0439Raζ with ζ = 0.50, which
agrees with the prediction by Grossmann and Lohse [1]
of a pure power law with ζ = 1/2 for the ultimate state
with turbulent BLs. A least-squares fit to the six points
above Ra∗

2
yields ζ = 0.504 ± 0.006. A much wider Ra

range in the ultimate state obviously would be desirable,
but is not accessible with our facility.

In addition to the classical state, a complex Ra depen-
dence of Reeff is observed in the range Ra∗

1
≤ Ra ≤ Ra∗

2
.

Near and just above Ra∗1 the data seem to scatter ran-
domly. For slightly larger Ra >∼ 5 × 1013 they fall on
well defined, albeit non-monotonic, curves as indicated
by the black short-dashed lines in Fig. 2b. The different
symbols show that the results obtained at several differ-
ent sample pressures, and thus different values of ∆T ,
reproduced this complex Ra dependence. There are also
some points that do not fall on the short-dashed lines,
suggesting multi-stability.

In Fig. 2a we show the results for Nu obtained simul-
taneously with the Reeff measurements, with data taken
at different pressures and Tm indicated by the same sym-
bols as those used in Fig. 2b (note that these points are
not the same as those shown in Fig. 1). Here one sees
clearly that the Ra range of the transition region of Nu
coincides with that of Reeff . One also can see that the
Nu results contain some of the complex dependences of
Reeff (Ra); but these complex effects are much less no-
ticeable.

Finally, in Fig. 2c we collected our results for Reeff ,
normalized by Pr0.75 and reduced by Ra0.5, in the clas-
sical (solid circles) and the ultimate (solid diamonds)
states, as well as in the transition region (small open
circles). The solid line through the classical data cor-
responds to Reeff = 0.252Raζeff /Pr0.750 with ζeff =
0.434 ± 0.003, quite close to ζeff = 0.443 obtained
from the GL model for Γ = 1 [30]. Using the pre-
diction Res = 0.48

√

Reeff [5], our result yields Res =

0.24Ra0.217/Pr0.375 for the BL shear Reynolds number.
For our Pr values this relationship gives Res = 183, 300,
and 398 for Ra∗1 = 1.3 × 1013, Ra∗ = 1.4 × 1014, and
Ra∗

2
= 5×1014 respectively. These values span the range

of Res over which a BL shear instability would be ex-
pected. For the transition at Ra = 2× 1011 indicated by
the data of Refs. [8, 9] one has Res ≃ 75, which is too
low for the BL shear instability.

Also shown in Fig. 2c are results from [12] (open
squares, red online) and [9] (solid squares, red online).
They are larger than ours. This is due to different mea-
surement methods and definitions of Re. We note that
the definition of Reeff is unambiguous, based on prop-
erties of correlation functions, and given by the EA [as
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explained above, to a good approximation it is equal to
Rev0 ≡ v0L/ν with v20 = 2

∫

E(k)dk]. Noteworthy is that
the data of [12] and [9] show no change within their res-
olution of their Ra dependence at Ra ≃ 2 × 1011 where
the authors had observed a transition in their Nu mea-
surements (see Fig. 1b) and where a change is expected
if the transition is to the ultimate state. Our data show
a clear discontinuity and a change of the dependence on
Ra at the transition observed by us near Ra ≃ 5× 1014.

Further, we show in Fig. 2c the results for ReU = UL/ν
based on the long-time average of the vertical velocity
component U . We see that ReU << Reeff , and that ReU
and Reeff both reveal a transition at the same value of
Ra. We do not show ReV ≡ V L/ν = (Re2eff − Re2U )

1/2

because within the resolution of the figure it would be
indistinguishable from Reeff .

In this Letter we reported results for Nu(Ra) and
Reeff (Ra). For Ra <∼ 1013 they are consistent with ex-
pectations for classical RBC [3, 5, 30]. For Ra >∼ 5×1014

the Nu results agree with theoretical predictions for the
ultimate state [1, 2, 7], but do not have the resolution
to distinguish between the different predictions [1, 2] for
the logarithmic corrections to a power law with expo-
nent 1/2. In that large-Ra range the Reeff results agree
with the predictions of Grossmann and Lohse [1] of a
pure power law with an exponent of 1/2 and no loga-
rithmic corrections; they do not support the logarithms
present in prior predictions [2]. At Ra∗

2
= 5 × 1014 both

the fluctuation-dominated Reeff and the mean-flow ReU
show a discontinuity, with a jump from the classical be-
havior at smaller Ra to the ultimate behavior at larger
Ra. For the range 1013 <∼ Ra <∼ 5× 1014 complex behav-
ior associated with the transition from the classical to the
ultimate state was observed for both Nu and Re. This
transition range is consistent with a shear-induced tran-
sition to turbulent BLs, corresponding to a range of the
shear Reynolds number from about 200 to 400. In view
of the above evidence, we believe that we have found and
characterized the transition to the ultimate (asymptotic)
state of RBC.

Finally, we note that the ultimate-state exponents
γeff = 0.38 and ζ = 0.50 were found recently also for
the corresponding variables in turbulent Taylor-Couette
flow [31, 32]. There the BL shear is applied directly by
the driving rather than indirectly by the induced LSC
and fluctuations, and the classical turbulent state with
laminar BLs and γeff = 0.31 and ζeff = 0.43 has not
yet been observed.
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