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Abstract

The LHC is already putting bounds on the Higgs mass. In this paper we use those bounds
to put constrains on the MSSM parameter space coming from the fact that, in supersymmetry,
the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the
Higgs mass translates into an upper bound for the masses for superpartners. We show that,
although current bounds do not constrain yet the MSSM parameter space from above, once the
Higgs mass bound improves big regions of this parameter space will be excluded, putting upper
bounds on SUSY masses. On the other hand, for the case of split-SUSY we show that, for
moderate or large tanβ, the present bounds on the Higgs mass already imply that the common
mass for scalars cannot be greater than 1011 GeV. We show how these bounds will evolve as
LHC continues to improve the limits on the Higgs mass.
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The experimental bounds on the Higgs mass are rapidly changing. Besides the LEP lower
bound, mh > 114.4 GeV [1], LHC has recently extended the 95% CL excluded region around
2MW to 149 GeV < mh < 190 GeV, and has excluded a new range at 295 GeV < mh < 450 GeV
[2]. For sure we are likely to see stronger limits (and hopefully a discovery) as the LHC
luminosity keeps growing.

These bounds put constrains on the parameter space of the Standard Model: they di-
rectly translate into bounds on the self-coupling of the Higgs. At tree-level the relation reads
m2

h = 2λtreev
2, where λ is the SM Higgs quartic-self-coupling and v = 174.1 GeV is the Higgs

expectation value. This is not especially challenging per-se, in the sense that there is no partic-
ular prediction for that coupling in the pure SM. On the other hand, there are models where λ
is not a free parameter, but it is related to other parameters of the theory; hence a bound on mh

can put constrains on those parameters. One classic example is supersymmetry (SUSY) where,
in the minimal model (MSSM), λtree = 1

4(g2+g′2) cos2 2β. Here g, g′ are the SU(2)×U(1) gauge
couplings and tanβ = 〈Hu〉/〈Hd〉, i.e. the ratio of expectation values of the two MSSM Higgs
fields. This relation means, in particular, that at tree-level the mass of the Higgs in the MSSM
is bounded by the mass of the Z-boson (91.1 GeV). As it is well-known, radiative corrections
increase mh, which can then get compatible with its experimental (LEP) lower bound, at the
expense of requiring a relatively heavy spectrum ( >∼ 1 TeV) of superpartners, which in turn
introduces some fine tuning. Much work has been devoted to this important feature of the
MSSM [3, 4, 5, 6].

The approach of this Letter is opposite and complementary: using the upper bound on the
Higgs mass to put an upper bound on the masses of supersymmetric particles.

It is common to hear that “SUSY cannot be ruled out”, meaning that one can always
increase the masses of superpartners to avoid its discovery at the LHC or any conceivable
experiment. However, for the above-mentioned reasons, in the MSSM the Higgs mass cannot
be arbitrarily large. Actually, the radiative correction to m2

h depends logarithmically on the
SUSY masses (principally on stop masses). This is easy to understand. The MSSM tree-level
relation, λtree = 1

4(g2 + g′2) cos2 2β, breaks down at the threshold scale where supersymmetric
particles become decoupled. Below that SUSY-threshold, λ runs down to the electroweak scale
following the SM renormalization group (RG) equation. The SUSY-threshold scale is essentially
given by (an average of the two) stop masses, since, in the one-loop effective potential they are
responsible for the largest contribution to the Higgs quartic-coupling to be matched with the
SM-effective-theory (for details see e.g. [4]). Hence, the enhancement of λ, and thus of m2

h,
goes logarithmically with the ratio of the SUSY-threshold scale to the electroweak scale.

Since the value of λ at the SUSY-threshold scale is always perturbative, the Higgs mass in
the MSSM necessarily obeys the SM perturbativity upper bound. For the extreme case when
the supersymmetric masses are as large as MP , and so is the threshold of new physics, this
bound reads mh

<∼ 180 GeV [7], which is already overtaken by the recent LHC exclusion ranges
on mh quoted above. In other words, for the MSSM the only relevant experimentally allowed
range for mh is

114.4 GeV < mh < 149 GeV . (1)

These upper and lower bounds on mh translate, respectively, into upper and lower bounds on
the masses of the supersymmetric particles. The latter can be complemented with the recent
direct LHC bounds on the size of the supersymmetric masses [8], giving the window of scales
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where the MSSM can live. In this letter we are going to show explicitly this window, describing
how it will evolve as the LHC improves the limits on the mass of the Higgs or discovers its
existence. We will see that the upper bounds on the MSSM scale are not yet of physical
significance, but they will get much stronger in the near future.

In this paper we have evaluated the Higgs mass, starting with the tree-level value of λ at
SUSY-threshold scale, corrected with 1-loop threshold corrections

λ(MSUSY) =
1

4
(g2 + g′2) cos2 2β +

3

16π2
m4

t

v4
Xt (2)

with

Xt =
2(At − µ cotβ)2

M2
SUSY

(
1− (At − µ cotβ)2

12M2
SUSY

)
(3)

in where mt is the running top mass corresponding to a pole mass Mt = 173.1±1.25 GeV [9]; At

is the trilinear scalar coupling, µ is the mass parameter for the Higgses in the superpotential;
and MSUSY represents a certain average of the stop masses [4, 5, 6]. Note that, unless the
combination |At − µ cotβ| becomes larger than

√
12MSUSY, which is very odd (and almost in

coflict with charge and color breaking bounds), the value of Xt is in the range 0 ≤ Xt ≤ 6.
The above value of λ has to be run down to the electroweak scale, say Qew. Then the Higgs

mass is given by

mh ' 2λ(Qew)v2 (4)

This relation gets one-loop radiative corrections (in the effective SM theory), which are rendered
negligible by choosing appropriately Qew. A nearly optimal choice is Qew = Mt [4]. Finally, to
get the pole mass, Mh, one has to add (pretty small) radiative corrections. We have performed
the previously-sketched calculation of mh using the 2-loop SM RG equation of λ, which is
coupled to the RG equations of the other SM parameters, in especial the top Yukawa coupling,
yt, and the strong coupling, α3. The complete set of RG equations can be found e.g. in ref.[10].

Let us mention that in the literature there are approximate analytic formulae for the Higgs
mass, obtained by approximating the running of λ at a certain order in the leading log expansion
[5, 6]. The first terms of those formulae read

m2
h 'M2

Z cos2 2β +
3

4π2
m4

t

v2

[
1

2
Xt + log

M2
SUSY

M2
t

]
+ · · · (5)

These approximations are only valid for MSUSY
<∼ 1 TeV, so they are not applicable to our

problem. However, eq.(5) is useful to qualitatively understand the numerical results, so we
have shown it explicitly.

Fig. 1 (left panel) shows mh as a function of MSUSY for three representative values of tanβ,
namely tanβ = 1, 3, 10. Due to the parametric dependence on cos2 2β shown in eq.(5) the
results remain almost unchanged for larger values of tanβ. From the plots it becomes clear
that one cannot reproduce an arbitrary large value of mh just by increasing MSUSY. Actually,
there is an absolute upper bound of ∼ 145 GeV, which becomes more stringent for moderate
to low values of tanβ. It should be kept in mind that MSUSY essentially stands for “stop
masses”. Indeed, in the usual MSSM scenarios the masses of all supersymmetric particles are
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Figure 1: Bands of constant tanβ in the MSUSY − mh (left panel) and constant Higgs mass in the
tanβ −MSUSY plane (right panel) for the MSSM. From top to bottom tanβ = 10 , 3, 1 and mh =
140, 130, 120, 115 GeV respectively. The low (gray) horizontal band stands for the direct LHC lower
bounds on MSUSY (see text).

of the same order (say, within a factor of 10 or less). Therefore, with this caveat, the following
results are valid for essentially any MSSM model. A notable exception are split-SUSY models
[11], where the masses of scalar superpartners are very high but the gauginos and higgsinos are
still relatively light. Actually, the results for split-SUSY are analogous to those of the ordinary
MSSM, but we will discuss them separately.

Now we can invert the previous argument and extract from the numerical results upper
bounds on MSUSY as a function of tanβ and the upper (present and future) experimental
bound on mh.

These are given in Fig. 1 (right panel), which shows the bands of constant Higgs mass in the
tanβ −MSUSY plane. The width of the bands comes from the various sources of uncertainty,
to be discussed shortly. The behavior shown in Fig.1 can be qualitatively understood from the
approximate expression (5). In particular, the larger tanβ the bigger the first (tree-level) term
in Eq.( 5) becomes, and thus a smaller value of MSUSY is required to reproduce mh. The width
of each band (darker part) has been obtained by varying Xt within its range, 0 ≤ Xt ≤ 6.
Note that this uncertainty arises from our ignorance about the values of the remaining MSSM
parameters. On top of that uncertainty, we have added the error coming from experimental
uncertainties in the theoretical computation of mh, resulting in the wider lighter bands. The
experimental uncertainty is dominated by the one in the top mass Mt = 173.1 ± 1.25 GeV.
Additional sources of experimental error, such as the one in α3, are negligible when added in
quadrature. Let us remark that we have not added in quadrature the uncertainties coming from
the ignorance about Xt and Mt, but linearly (to avoid statistical inconsistencies); thus the light
band represents an overestimate of the total error. On the other hand, there is an intrinsic
theoretical error coming from the higher-loop effects not considered in the computation of mh,

3



which we estimate in ∼ 2 GeV [4, 5, 6]. This is negligible when added in quadrature to the
other sources of error.

Now, each band of Fig.1 (right panel) represents the future upper bound on MSUSY, as
soon as the upper bound on mh reaches the corresponding value. The present relevant bound,
mh < 149 GeV, does not constrain the MSSM parameter space in a significant way. Actually,
the corresponding band is outside Fig.1. But it is clear from the figure that as soon as new
LHC bounds on mh are reported, the MSSM parameter space will become significantly cornered
from above. Note also that the mh = 115 GeV band corresponds to the present lower bound
on MSUSY. So in Fig.1 we see the future evolution of the MSSM window. On the other hand, if
LHC discovers the Higgs, say at mh = 130 GeV, the associated band in Fig.1 gives the allowed
region of the MSSM parameter space.

We have complemented the latter lower bound on MSUSY with the direct lower bounds
that LHC has already put on the MSSM parameter space [8]. They translate into the grey
band at the bottom of Fig.1, which has been obtained as follows. LHC bounds on the MSSM
are presented by ATLAS and CMS as exclusion regions in the constrained MSSM (CMSSM)
parameter space, The CMSSM is characterized by universality of the soft terms at MX . We have
extracted the data from the ATLAS exclusion plot with EasyNData [12] and then calculated
the exclusion contour for the gluino mass, Mg̃, versus MSUSY with the SoftSUSY package [13].
It turns out that MSUSY must be larger than 750-1000 GeV (the precise value depends on the
value of Mg̃). This uncertainty in the bound is reflected in the narrow darker grey strip on
top of the light one. Note that, strictly, the grey band corresponds to a lower bound for the
CMSSM case; but one does not expects big changes in ordinary MSSM models. Certainly,
in a general MSSM, stop masses (whose values determine MSUSY)) do not need to coincide
with the squark masses of the first two generations (the ones directly probed so far by the
LHC). However, this does not mean that stop masses can be anything. Even taking a vanishing
initial stop mass at the scale where SUSY breaking is communicated to the observable sector,
say MX , radiative corrections produce a contribution ∼ 2.5M2

g̃ . If the breaking of SUSY is
communicated at a lower scale this contribution decreases logarithmically with the scale but it
is always very substantial. This does not mean that one of the stops might not be significantly
lighter, due to the potential large mixing between them, but the average, i.e. MSUSY, is always
large. Consequently the LHC direct lower bounds on MSUSY, represented by the grey band in
Fig. 1, remains valid for most of the MSSM models (the only exception would be models with
large splitting of the third generation and very low scale of SUSY breaking communication).

One could take the attitude of only considering low MSUSY, say MSUSY
<∼ O(TeV), as

reasonable, in order to avoid fine-tuning to get the correct electroweak scale. Then, some of
the upper bounds shown in Fig. 1 would be irrelevant. However, it has been suggested that
in a landscape scenario such fine-tuning can be largely compensated by the overabundance of
vacua with SUSY broken at a high scale, in which the anthropic principle would operate, see
e.g. ref. [14]. As we have seen, this kind of scenario is going to be tested by LHC very soon.
The split-SUSY framework [11], which we are going to discuss next, is in fact a popular variant
of the above-mentioned landscape scenario.

In split-SUSY one supposes that the spectrum of superpartners is split, having scalars at
higher scales whereas gauginos and higgsinos remain light, usually thanks to an approximate R-
symmetry. In this way, split-SUSY is kept consistent with the perturbative unification of gauge
couplings at MX and still contains Dark Matter candidates. The approximate R-symmetry is
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Figure 2: The same as Fig.1 but for split-SUSY. In the tanβ − MSUSY plane, from top to bottom
mh = 150, 140, 130, 120, 115 GeV.

also responsible to keep A− and µ−parameters small, something necessary for the radiative
stability of the scenario. So in split-SUSY there are two well-separated SUSY thresholds (thus
the name).The prediction for mh in split-SUSY is done following a similar approach to the
one previously discussed and applied for the MSSM. This prediction was already considered
in the second seminal split-SUSY paper of ref. [11]. We have updated that calculation (using
e.g. upgraded information about the top mass) and studied in a systematic way the bounds on
MSUSY depending the evolution of the upper bound on mh. The main difference with respect
to the MSSM case is that in split-SUSY the gluinos remain active and contribute significantly
to the RG equations between the upper and the lower SUSY-thresholds.

The results are shown in Fig. 2, which is analogous to the previous Fig. 1 for the MSSM.
Due to the smallness of At and µ (and thus of Xt), the threshold correction for λ at the high
SUSY threshold is negligible, see Eq. (2). In consequence, the width of the bands in Fig. 2
is only due to the experimental error on Mt. Note also that MSUSY corresponds to the upper
SUSY-threshold (∼ stop masses), and therefore the plotted upper bounds are absolute upper
bounds for SUSY in the split-SUSY scenario. In contrast to the MSSM case, there is a region of
the parameter space, large tanβ and very heavy masses, that is already excluded with today’s
bound on the Higgs mass; yielding MSUSY < 1011 GeV. As soon as the upper bound on mh

reaches 140 GeV, the exclusion will hold for any tanβ. This is most relevant for split-SUSY,
since in this scenario we do expect the upper SUSY-threshold to lie at very high energy; typically
as large as MX or Mp, something which is going to be probed very soon by LHC.

To conclude, we have used the current and forthcoming LHC upper bounds on the Higgs
mass to put upper bounds on supersymmetric masses, MSUSY; using the fact that in the MSSM
the quartic Higgs coupling, and therefore the Higgs mass, is a function of the SUSY masses (in
particular stop masses). Right now there is no significant constraint on the parameter space of
the MSSM but very soon there will be, as can be seen in Fig. 1. On the other hand, for split-
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SUSY a non-negligible part of the parameter space can already be excluded on these grounds,
as can be seen in Fig. 2. As the LHC produces better bounds on mh the allowed region will be
more and more shrunk, therefore showing that, even if SUSY is not found, it can not be hidden
way. Eventually (and hopefully) the Higgs will be discovered, and one can use these results to
establish the region of the MSUSY − tanβ plane consistent with the actual value of mh.
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