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We study, numerically and theoretically, defects in an anisotropic liquid that couple to the ex-
trinsic geometry of a surface. Though the intrinsic geometry tends to confine topological defects
to regions of large Gaussian curvature, extrinsic couplings tend to orient the order along the local
direction of maximum or minimum bending. This additional frustration is generically unavoid-
able, and leads to complex ground state thermodynamics. Using the catenoid as a prototype, we
show, in contradistinction to the well-known effects of intrinsic geometry, that extrinsic curvature
expels disclinations from the region of maximum curvature above a critical coupling threshold. On
catenoids lacking an “inside-outside” symmetry, defects are expelled altogether above a critical neck
size.
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A curved surface naturally frustrates the orientational
order of materials living upon it [1, 2]. One well-known
manifestation of this frustration is driven by the instrinsic
geometry of surfaces with Gaussian curvature, where the
incompatibility of straight and parallel directions leads
to geometrically-induced stresses [3]. To screen these
stresses, disclinations form even in the ground state, and
localize to regions of high Gaussian curvature [4, 5]. The
complex geometrical interplay between curvature and ori-
entation, in general, and the intimate coupling between
topological defects and Gaussian curvature, in particu-
lar, plays a key role in shaping the structure of a number
of important systems two-dimensional systems, includ-
ing superfluid films [1, 2], nematically-decorated particles
[6–8], smectic films [9], crystals [10, 11], and membranes
enriched with anisotropic proteins [12, 13].

In this letter, we describe a fundamentally different
frustration arising, not from Gaussian curvature alone,
but instead from an unavoidable competition between
the distinct types of long-range ordering favored by in-

trinsic and extrinsic surface geometry. In short, energetic
couplings to intrinsic and extrinsic geometry respectively
measure deflections of orientational order in and out of
the tangent plane of the surface. Extrinsic effects depend
on how the surface sits in space, and describe the pref-
erence to orient along certain directions with respect to
the principle directions of curvature [9, 14–16]. Although
intrinsic and extrinsic effects represent geometrically dis-
tinct couplings between curvature and orientation, they
are mutually frustrating driving forces on anisotropic sur-
faces which is particularly pronounced on surfaces of neg-
ative Gaussian curvature. Here, we show that the frus-
tration between intrinsic and extrinsic effects sensitively
controls the organization of disclinations. On surfaces
that distinguish between an “inside” and “outside” [17],
this frustration can overwhelm any effects arising from
screening Gaussian curvature, resulting in a dramatic re-
structuring of long-range order in the ground state. This

suggests that a model relying on either intrinsic or ex-
trinsic geometry alone is, in general, not sufficient to
capture the interplay between curvature and orientation
in diverse class of complex materials ranging from liq-
uid interfaces stabilized by anisotropic particles [21–23]
to tilted-bilayer phase of fluid membranes [16, 18, 19].

A coupling to extrinsic geometry arises generically in
anisotropically-ordered phases, where directionality can
couple to the full curvature tensor [15, 16, 20]. Free en-
ergy terms that couple orientational order to extrinsic
curvature give rise to a symmetry-breaking field favor-
ing uniform orientation along specific directions, while in
regions of high (Gaussian) curvature, the intrinsic ge-
ometry favors the local “isotropic” textures generated
by disclinations. Because both types of frustration arise
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FIG. 1. (color online) (a) A catenoid with four, partially ex-

pelled −1/2 defects as determined by numerical minimization.
Defects are confined to the neck in the ground state of intrin-
sic energy, shown in side- and top-view in (b) and (c). In
the ground state of extrinsic energy, (d) and (e), defects are
expelled from the necked results in an overall +1 charge on
the planar regions.
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from the same geometrical quantities (curvature), their
competition is controlled by the same scale: i.e. extrinsic
curvature favors uniform orientational ordering precisely
where intrinsic curvature favors screening by disclina-
tions. To demonstrate the nature of frustration between
intrinsically- and extrinsically-favored order, in this letter
we focus on the particular example of a catenoid for which
expressions can be obtained analytically and which, as
we will show, neither extrinsic nor intrinsic curvature can
dominate completely. As an important result of this frus-
tration we show that increasing the relative strength of
extrinsic to intrinsic couplings drives a structural transi-
tion in the ground state order in which intrinsically favor
defects are driven away and expelled from the high, cur-
vature “neck” of the catenary surface.
We begin by briefly overviewing the effect of intrin-

sic geometry on curved nematics. We define an orthog-
onal coordinate system on the surface u = (u, v) and
a corresponding orthonormal frame {eu, ev,N}, where
N is the unit surface normal. A two-dimensional ne-
matic phase, therefore, has a director lying in the tan-
gent plane such that n = cos θ(u)eu + sin θ(u)ev. For
convenience, we choose a local isothermal, or conformal,
coordinate system, (u, v), defined by a metric of the form
ds2 = Ω(u)(dv2 + du2). In the presence of a configura-
tion of disclinations, labeled by n and having topological
charges sn and positions (vn, un), one finds the explicit
expression θ(u) = −

∑

n(sn/2π)Im ln(u + iv − un − ivn)
and arrives at an energy written in terms of disclination
position alone [1, 6],

Ein =
C

2

∑

m,n

snVint(un − um)sm (1)

+C
∑

n

VG(un)sn

(

1−
sn
4π

)

,

where C is a constant modulus equal to the Frank con-
stants in the one-constant approximation. The first term
describes long-range interactions between disclinations,
where Vint(u) is given by inverting the Laplace-Beltrami
operator, ∇2Vint(u) = δ2(u). The second term de-
scribes the interaction of the disclination with the Gaus-
sian curvature, G(u), as encoded by a “geometric poten-
tial,” VG(u), satisfying ∇2VG(u) = G(u) [1]. This high-
lights the fundamental consequence of intrinsic geometry:
disclinations are attracted to regions of oppositely-signed
Gaussian curvature via long-range interactions.
Thus, defects, through the intrinsic energy, “screen”

Gaussian curvature, which would otherwise force lines
of parallel orientation to converge or diverge. This is
neatly demonstrated on the catenoid, a surface which
concentrates negative Gaussian curvature within a nar-
row “neck” adjoining two asymptotically planar sur-
faces. Conveniently, the radial and azimuthal direc-
tions provide a natural isothermal coordinate system,
(v, u), respectively, with ∇2 = [1/Ω(u)](∂2

u + ∂2
v) and

G = −∇2(lnΩ)/2. We immediately obtain VG(u) =
− lnΩ(u)/2. For a catenoid with neck radius, r,
we obtain the geometric potential explicitly, VG(u) =
− ln

[

cosh2(v/r)
]

/2. The intrinsic energy thus favors
negatively charged disclinations along the line of max-
imal curvature, v = 0, and positively-charged defects are
expelled. The geometric potential is strongly confining
for negative disclinations as VG ∼ −|v|/r for |v| ≫ r,
indicating the divergent cost of expelling these disclina-
tions to infinity. Intuitively, the strong confinement of
these defects can be understood from the uniform θ con-
figurations shown in Fig. 1 (b-c), which due to the ab-
sence of the requisite balance of negatively-charged de-
fects in the neck effectively carry +1 disclination textures
on each of the adjoining asymptotic planes. Because
∫

dA G = −4π, a net defect charge of −2, or four −1/2
disclinations (sn = −π), are required to screen Gaussian
curvature of the neck.
Extrinsic geometry further complicates this already

complex picture. The extrinsic energy contributions to
the free energy quantify the cost of out-of-plane gradients
of n and are, therefore, sensitive to the surface’s embed-
ding, X(u). The surface curvature can be expressed as
a tensor, hij = N · ∂i∂jX, where the indices can take on
the values v or u. The eigenvectors of the tensor give
the directions of maximal and minimal curvature while
the corresponding eigenvalues give the principal curva-
tures. In the most general form, the coupling between
hij and the director can be expressed in terms of the
three rotationally invariant quanitites: Cnn = n

i
n
jhij ,

Cnt = n
i(N×n)jhij and Ctt = (N×n)i(N×n)jhij [24].

To second order in curvature, all terms allowed for achiral
materials include [14]

Eex =

∫

dA
{

KnnC
2
nn + 2KntC

2
nt +KttC

2
tt+

+K ′
nnCnn +K ′

ttCtt

}

. (2)

Here, Kij and K ′
ij are phenomenological parameters that

reflect the coupling of extrinsic curvature to orientation,
whose values are determined by the underlying micro-
scopic physics of the system. For a microscopically sym-
metric interface such as a tilted-bilayer membrane, for
which N → −N is a symmetry, terms linear in the curva-
ture must vanish (i.e. K ′

nn = K ′
tt = 0). For asymmetric

interfaces, however, linear terms account for the physical
distinction between “inside” and “outside” [17]. Unlike
the intrinsic energy, which is invariant under global rota-
tions of the director aroundN, the extrinsic coupling gen-
erates an unavoidable and geometrically-induced symme-
try breaking field on anisotropic surfaces. In terms of the
angle field,

Eex =

∫

dA
{

γ cos[4(θ + β)] + γ′ cos[2(θ + β)]
}

(3)

where γ = (Ktt + Knn − 2Knt)(κ1 − κ2)
2/8 and γ′ =

(K ′
nn − K ′

tt)(κ1 − κ2)/2 + (Knn − Ktt)H(κ1 − κ2) are
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the strengths of the 4-fold and 2-fold symmetry-breaking
fields respectively. This coupling is critically sensitive
to the local anisotropy of bending on the surfaces: κ1

and κ2 are the principal curvatures of the surface, H =
(κ1 + κ2)/2 is the mean curvature, and β measures the
angle between eu and the direction of largest principal
curvature. For the case of the catenoid, note that both
H = 0 and β = 0.
From this point of view, extrinsic energy leads to a

generic preference to lock the director to the direction
of local maximum or minimum curvature, a preference
which is strongest in regions of high-curvature anisotropy.
For example, the curvature distribution on the catenoid,
κ1 = −κ2 = r−1sech2(v/r), leads to the extrinsic pref-
erence for uniform orientation most concentrated in the
neck region. Importantly, the uniformly-ordered ground
states of the extrinsic energy on negatively-curved sur-
faces like the catenoid [Fig. 1 (d-e)] correspond precisely
to the maximal energy configurations of the intrinsic en-
ergy.
To explore the defect configurations that best negoti-

ate the compromise between intrinsic and extrinsic ener-
gies on the catenoid, we employ two methods. First, we
calculate the perturbative contributions from Eex in the
limit cases of small γ and γ′. To first order, this amounts
to evaluating Eq. (3) at the intrinsic energy saddle-point
with an additional global rotation of θ determined by in-
trinsic energy minimization for 4 disclinations distributed
at intervals of π/2 around the neck and staggered at
heights v = ±h away from the neck. Second, we numer-
ically study the ground state of a coarse-grained model
of nematics on the catenoid. Our approach is based on a
generalization of the Lebwohl-Lasher model [25] for the
case of a two-dimensional mesh of non-uniform geometry.
Starting with a catenoid discretized in a large num-

ber of small triangular patches, a nematic director is as-
signed to the tangent plane of each patch. The spin-spin
interaction energy is given by Hint =

∑

i,j ∆Ai∆Aj

[

1 −

(ni ·nj)
2
]

V (rij), where V (rij) = exp[−r2ij/(2σ
2)] weights

spin coupling between patches i and j by their spatial
distance rij , ∆Ai is the area of the ith patch and we
choose σ = 0.36r. The area weighting has the important
advantages that the coarse-grained model appropriately
reduces to the continuum form of the intrinsic energy
in the limit that ∆Ai → 0, and it minimizes the influ-
ence of nonuniform mesh geometry. To this we add a
finite-difference approximation of Eq. (3) to account for
extrinsic energies. A Monte-Carlo simulated annealing
scheme with the Metropolis-Hastings sampling method
is used to determine the ground state.
For symmetric interfaces, γ′ = 0, the relative strength

of the extrinsic and intrinsic energy scales is character-
ized by ∆K/C, where ∆K ≡ (Knn +Ktt − 2Knt)/8. In
Fig. 2(a), we plot the mean vertical distance measured
from the neck at v = 0 along the symmetry axis of the
surface of the four -1/2 disclinations in the ground state.
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FIG. 2. (color online) Mean vertical distance of the defects
from the neck of the catenoid for a (a) symmetric and (b)
asymmetric interface. The solid curves are perturbation the-
ory predictions, and the points are numerical simulation re-
sults. In gray regions, simulations show expulsion of defects
a from finite-height (zmax = 3r) surface.

Both the simulations and perturbation theory show that
the defects are confined to z = 0 by the geometric poten-
tial for small extrinsic couplings, |∆K| < ∆Kc ≈ 0.8C.
At this critical coupling, the four disclinations are found
to jump discontinuously to configurations outside of the
high-curvature neck. We denote this as a transition be-
tween the confined and partially expelled configurations,
as the defects in the latter state, though expelled from
the neck remain bound by the geometric potential and
maintain a finite distance from the neck for any finite
value of ∆K [Fig. 1 (a)].

For an asymmetric interface with γ = 0, we find dra-
matically different behavior. Here, the relative strength
of extrinsic to intrinsic energies depends on scale, char-
acterized by the ratio r∆K ′/C, where ∆K ′ = (K ′

nn −
K ′

tt)/2. As shown in Fig. 2(b), instead of a discontinuous
transition, the defects are pushed from the neck region
for any finite value of ∆K ′, with mean distance growing
linearly as r|∆K ′|/C for weak extrinsic couplings. Most
significant, the four defects are expelled to v → ±∞ as
|∆K ′| → ∆K ′

c ≃ C/r and are completely absent from the
ground state of nematic order for stronger anisotropies.
In this case, we see a transition from a partially expelled

to fully expelled state for the disclinations.

These two results for symmetric and asymmetric in-
terfaces demonstrate the profound influence of extrinsic
geometry on the ground state of nematic order. They
also highlight, in different ways, the subtle relationship
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between disclinations and the anisotropic extrinsic cur-
vature. In the simplest view, the extrinsic anisotropy is
localized to a finite region of size r in the catenoid and,
therefore, competes with the near-field isotropic texture
that surrounds a defect core. A disclination in the neck
costs an extrinsic energy of roughly r2∆K(∆κ)2 ≈ ∆K
relative to the uniformly-oriented state. Relocating the
disclination away from the neck adds an intrinsic energy
penalty of order sC. Comparing, we expect defects to
be expelled when ∆K ≫ C. However,

∫

dA(∆κ)2 =
−
∫

dAG = 4π, so there is only a finite extrinsic energy
to be gained; disclinations can only be expelled partially.
This simple picture is not adequate on asymmetric in-

terfaces. Indeed, for nematics on asymmetric catenary
interfaces, the extrinsic director coupling is far more ho-
mogeneous in its distribution. This is straightforward
to see in isothermal coordinates, where the area ele-
ment grows exponentially with vertical height from the
neck as dA = dudv cosh2(v/r). This precisely balances
the |∆κ| = r−1sech2(v/r) decay, indicating that extrin-
sic coupling is strong everywhere. We can understand
the far-field interactions between defects and extrinsic
coupling by visualizing a partially-expelled nematic tex-
ture, with defects at v = ±h, on the conformal map
(the v − u plane) (see Fig. 3). The intrinsic energy
is ∆K ′r−1

∫

dudv cos[2θ(u)]. We consider contributions
from constant-v contours by examining the rotation of θ
around closed contours, such as Cv>h and Cv<h shown
in Fig. 3 . In the map, the director rotates by +2π rel-
ative to the upper and lower boundary to maintain the
uniform order in the asymptotic planes. The value of
∮

c
dℓ · ∇θ = 2π − πn(v), where n(v) is the number of

disclinations in the region v′ > v. Since the contribu-
tions from the vertical portions of the contour cancel due
to the u → u + 2πr symmetry, the director rotates by
+2π along contours for |v| & h, leading to no net extrin-
sic energy gain. For contours |v| . h, no net rotation of
θ occurs, leading to a uniformly-oriented texture in the
region spanning the disclinations and a coherent extrin-
sic energy gain of roughly −∆K ′h. Comparing this to
the intrinsic cost of pulling the defects from the mini-
mum of the geometric potential, Ch/r, we find that the
extrinsic effects are deconfining when ∆K ′ & C/r, and
disclinations are expelled entirely from the surface.
We conclude by briefly noting that the competition

between extrinsic and intrinsic effects is generic. For ex-
ample, we may consider the class radially-symmetric sur-
faces with the topology of the catenoid whose geometry
far from the neck is described by z(ρ ≫ r) = r(r/ρ)α,
where ρ is the radial distance from the axis and z(ρ) is the
vertical height from the neck. Since κ(ρ) ≃ ∂2

ρz ∼ ρ−α−2

and the area element grows as dA ≈ ρdφdρ, it is straight-
forward to estimate the total extrinsic energy gain for
expelling defects on asymmetric surfaces is, roughly,
∫

dAκ ∼
∫ R

r
dρρ−(α+1), where R is the system size. For

α > 0 this cost is finite and, when compared to the intrin-
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FIG. 3. (color online) Conformal map of defects on a catenoid
a distance h from the center of the neck (v = 0), shaded
by extrinsic energy density with streamlines tangent to the
nematic director. Integration contours Cv < h and Cv < h
(dashed lines) have counterclockwise orientation.

sic energy cost to expel disclinations of ln(R/r), suggests
that defects are always confined on the surface. On the
other hand, the cost diverges when R/r → ∞ for α < 0
suggesting that defects are unstable for any finite extrin-
sic coupling. Interestingly, the catenoid manifests the
marginal case of α = 0, in which the partially-expelled
and fully-expelled states are separated by a second-order
critical point. These simple arguments suggest that the
ground-state thermodynamics of defects on curved inter-
faces is critically sensitive not only to the microscopic
physics underlying the extrinsic and intrinsic couplings
but also to subtle changes in surface geometry.
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