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We investigate the growth of a crystal that is built by depositing cubes inside a corner. The
interface of this crystal approaches a deterministic growing limiting shape in the long-time limit.
Building on known results for the corresponding two-dimensional system and accounting for basic
three-dimensional symmetries, we conjecture a governing equation for the evolution of the interface
profile. 'We solve this equation analytically and find excellent agreement with simulations of the
growth process. We also present a generalization to arbitrary spatial dimension.
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Growing interfaces constitute a venerable subject, but
the proper continuum framework to account for this
growth was developed not so long ago [1]. A detailed and
beautiful description of fluctuations of one-dimensional
growing interfaces has been proposed [2, 3], culminat-
ing in a recent solution of the KPZ equation [4]. For
real applications, two-dimensional growing interfaces are
much more important, but their governing stochastic
continuum equations [1] remain unsolved. Nevertheless,
the analysis of two-dimensional growing interfaces is not
hopeless. Indeed, although interface fluctuations have at-
tracted the most attention, they become less important
as the interface grows. The limiting shape — the aver-
age interface profile in the long-time limit — is the more
primal characteristic.

If growth begins from a flat substrate, the interface ad-
vances at a constant average speed, so only fluctuations
matter. In numerous applications, however, the limit-
ing shapes are curved and are known only in rare cases.
One such example is the 241 dimensional Gates-Westcott
model for vicinal interfaces, which was solved by a free-
fermion mapping [5]. This growth process exhibits loga-
rithmic height correlations and therefore does not belong
to the strong-coupling KPZ universality class. Average
interface profiles are also known for certain anisotropic
2+1 dimensional growth models [6, 7]. However, even for
the most basic isotropic growth models limiting shapes
are not known. For example, for the two-dimensional
Eden-Richardson model [8] the limiting shape is un-
known, although the statistics of its fluctuations are un-
derstood (and belong to the KPZ universality class).

Here we investigate the limiting shape of a crystal that
grows inside a corner. This process can be defined in ar-
bitrary dimension and on any lattice (with an appropri-
ately defined ‘corner’). We specifically consider a cubic
lattice, where the corner is the initially empty positive
octant. Starting at ¢t = 0, elemental cubes are deposited
at unit rate onto inner corners (Fig. 1). Initially, there
is one inner corner and thus one place where a cube can
deposit. After this first event, there are three available
inner corners that can accommodate the next cube. The

interface shape becomes smoother as it grows and ulti-
mately approaches a deterministic limiting shape.

FIG. 1: (color online) Upper left: 3d crystal of volume 4.
The next elemental cube can be deposited at one of 6 inner
corners. Right: Crystal at t = 140.

The corner growth model admits a dual interpretation
as the melting of a three-dimensional cubic crystal by
erosion from the corner. There is also a magnetic inter-
pretation in which plus spins are initially assigned to each
site inside the corner and minus spins to exterior sites,
with the spins endowed with zero-temperature Glauber
spin-flip dynamics [9] in a weak negative magnetic field.
This dynamics allows only plus spins at inner corners to
flip and thus is isomorphic to the corner melting problem.
The magnetic interpretation naturally suggests consider-
ing the system in zero magnetic field, which results in a
growing interface whose characteristic scale grows diffu-
sively rather than ballistically. Other modifications in-
volve changing the initial condition; e.g., depositing the
cubes onto a planar substrate (the ‘hypercube stacking
model’ [10]) leads to a trivial limiting shape but is better-
suited to studying non-trivial height fluctuations.

In what follows, we use the language of deposition;
most importantly, we allow only deposition events and
no evaporation. Growth inside a two-dimensional cor-
ner is well understood by mapping the corner growth



process onto the one-dimensional asymmetric exclusion
process [11]; fluctuations in this limiting shape have also
been computed [12, 13]. In three dimensions, the corner
growth model can be mapped into a infinite set of cou-
pled exclusion processes in the plane, also known as the
‘zigzag model’ [14, 15]. Unfortunately, no exact solutions
are known for such planar interacting particle processes.

Here we focus on the limiting shape in three (and
higher) dimensional corners. Our analysis relies heav-
ily on insights gleaned from the limiting two-dimensional
corner interface shape [11]. In two dimensions this lim-
iting shape y(z;t) evolves according to the equation of
motion [16-18]

Yz (1)

from which the interface profile was found to be [11]

VT + Yy =Vt (2)

This parabolic shape (2) describes the non-trivial part of
the interface where 0 < x,y < t. Outside this region, the
original boundary is undisturbed.

Two properties severely constrain the form of possible
evolution equations for growth inside a three-dimensional
corner: (a) The governing equation for the interface
z(z,y;t) must reduce to the two-dimensional form (1) on
the boundaries © = 0 or y = 0; (b) The equation must be
invariant under the interchange of any coordinate pair.

Analogously to Eq. (1), we seek a three-dimensional
evolution equation of the form z, = F(zg,2,) that in-
volves only first derivatives (higher-order derivative are
asymptotically negligible). The simplest guess is the
product z; = [z;/(zz — 1)] [2y/(2y — 1)]. This equation
reduces to (1) on the boundaries z = 0, where z, = —00,
and y = 0, where z;, = —oo. The product ansatz is also
invariant under the exchange x <> y but not under the
exchanges x <> z or y <> z and therefore is wrong.

By extensive trial and error, we found that

e % [1_ 1 ] -
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satisfies the necessary coordinate interchange invari-
ances. These constraints severely limit the form of the
evolution equation. For example, if we seek a multi-
plicative correction factor to the product form in (3) as
the Laurent series Y A, (2 +2,) ", coordinate inter-
change invariance gives A\g = 1, \; = —1, while all other
amplitudes vanish [15]. Thus Eq. (3) is the only invari-
ant choice among the family of evolutionary equations
parameterized by A,.

We also found one other elemental evolution equation
of the form z; = F(z,,%,) that satisfies coordinate in-
terchange invariance; this form is unique if we again
seek corrections as a Laurent series representation. This
second solution is obtained by replacing the factor in

the square brackets in (3) with [1 4 (z,2y — 25 — 2,) 7' ].
This equation, which can be re-written more elegantly as

1 1 1
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and Eq. (3) are two functionally independent three-
dimensional evolution equations that satisfy coordinate
interchange invariance. We believe, but cannot prove,
that other elemental evolution equations do not exist.

FIG. 2: (color online) The interface (5).

Our conjecture is that (3) is the correct evolution equa-
tion. Evidence in favor of this statement also comes from
the excellent agreement with simulation data. For this
comparison, we solve Eq. (3) by the method of charac-
teristics. Starting from an empty corner, we find [15]
that the interface profile admits the following parametric
representation (Fig. 2)
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with ¢ = 2., 7 = 2z, and —oo < ¢,7 < 0. As a consistency
check, note that for r = —oo, we have z/t = (¢ —1)72,
y/t =0, and 2/t = ¢*>(¢ — 1)~2. Eliminating q, we get
VT + /z = /1, thereby recovering Eq. (2) for the inter-
section of the interface (5) with the y = 0 plane.

It seems impossible to eliminate the parameters (g, r)
from Eq. (5) and obtain a closed-form representation
of the interface in terms of z,y,z and ¢ as in the two-
dimensional case. However, the intersections of the in-
terface (5) with certain planes admit simplified descrip-
tions. For example, for the plane x = y, corresponding



to ¢ = r, we obtain

x lz 3/2\2/3 1
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which agrees well with simulations (Fig. 3).
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FIG. 3: (color online) Scaling plot of the surface profile z/t
versus z/t along the diagonal x = y at different times. Upper-
left inset: the difference A between the simulated values of
the left- and right-sides of (6). Lower-right inset: convergence
of the diagonal interface speed versus ¢~ %77,

Two additional tests suggest that the conjectured evo-
lution equation (3) and its solution (5) describe corner
growth accurately. Consider first the advance of the in-
terface along the ray x = y = z. From (5), the position
of this point is given by [19]

x=y=z=wt, w=g. (7)

Numerically, we measure w ~ 0.1261(2), which agrees
with our prediction w = 0.125 to within 0.9%. As a sec-
ond test, we compute the total volume V' beneath the
growing interface at time ¢. Since the linear dimension of
the interface grows linearly with time, V = vt3. To de-
termine the amplitude v, we use the parametric solution
(5) and change from the physical variables (x,y) to the
parametric coordinates (g, r), from which the amplitude
v reduces to the integral

0 40
vz[ [ dqdrC(q,r)m.

We compute the Jacobian 68((’2 ’f)) and the integral using

Mathematica and find

372
Numerically, we measure v = 0.01472(3), which is within
1.8% of our prediction.
While Eq. (3) accurately describes the corner inter-
face, small discrepancies between our measurements of

the coefficients w and v, and their predicted values (7)-
(8) persist. The alternative elemental evolution equation
(4) leads to the interface profile

VI + Y +vz = Vi, 9)

which is the natural generalization of Eq. (2). The cor-
responding values w = % and v = % that arise from
this profile substantially disagree with simulation results,
suggesting that (4) is wrong.

From the elemental equations (3) and (4), we can
also form two distinct one-parameter families of invariant

equations [15]; an additive family
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2yt 2y RapZy— 2z — 2y

Zx z
Zt = Y |:

Zp—1 zy—1

], (10a)

and a multiplicative family

zt:[ L=y )T“P—l—l]c. (10b)
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For the multiplicative class of evolution equations (10b),
the choice ¢ = 0.074 provides the best fit for the sim-
ulated value of v [20]. Similarly, for the additive class
of equations, the optimal mixing parameter is ¢ = 0.079.
However, a phenomenon as minimalist as corner interface
growth should be described by a simple equation that
does not contain an anomalously small mixing parame-
ter. This aesthetic consideration, in conjuction with our
numerical results, suggest that Eq. (3) describes corner
interface evolution.

The small discrepancies between our simulation re-
sults and the predictions that follow from Eq. (3) (see
the insets to Fig. 3) suggest that the approach to the
asymptotic state is slow. A similarly slow convergence to
asymptotic behavior occurs in various well-understood
one-dimensional growth models (see e.g. Refs. [21, 22]).
For example, for 1+1 dimensional corner growth, the in-
tersection of the interface with the (1, 1) direction evolves
according to [3, 12, 13]

a(t) = % +t'/3¢, (11)
where £ is a stationary random variable with (£) > 0.
Thus averaging over many realizations gives an effective
velocity weg — i ~172/3,

For growth inside a three-dimensional corner, we there-
fore anticipate that weg — % ~ t7% with a still-unknown
exponent «. Very extensive simulations for flat interfaces
in 2+1 dimensions indicate that « is close to 0.77 [23-25].
On the other hand, extrapolation from our simulations
for ¢ < 20000 suggests that o =~ 0.74. This difference
in exponent estimates suggests that ¢ = 20000 is still
outside the long-time regime for growth inside a three-
dimensional corner. This slow approach to asymptotic



behavior could be the source of the discrepancy between
our simulation results and the theoretical prediction (3)
for the interface profile.

Our argument for the form of the evolution equation
can be generalized to higher dimensions. Applying coor-
dinate interchange invariance and related symmetry con-
siderations, we conjecture that in d dimensions the height
h(zxy,...,xq_1;t) satisfies

1 (—1)?
hy = [ 12
K H ( hi1+...+hip> (12)

1<i1<...<ip<d—1

where h; = a%. These equations are again solvable using
the method of characteristics [15].

We emphasize that computing the limiting shape —
the primary characteristic of the interface — represents
only a first step to understanding its properties. One
challenging problem, given that interface fluctuations are
unknown even for flat interfaces, is to generalize Eq. (11)
to account for fluctuations of an interface that grows at
a three-dimensional corner. Also of interest are height-
height correlations at different locations and different
times. In 141 dimensions, these correlations decay slowly
along the characteristic curves of the evolution equation
[7, 26]. Whether similar behavior occurs in 2+1 dimen-
sional corner growth is unknown.

Fluctuations of integral characteristics of the interface,
such as the crystal volume, may be more tractable and
give rise to new phenomena. Consider, for example, the
total number of sites of various fixed degrees (number of
adjacent vertices). Sites of degree 3, in particular, can be
categorized as either inner or outer corners. The num-
ber of inner corners grows as N;, = ”(li—‘t/ = 3ut?, with
v = 372 /2! to leading order. One might anticipate the
same asymptotic growth for outer corners, but simula-

tions indicate that the latter grows slightly faster [15]:
Nout/Nin = 1.04 . (13)

Note that in two dimensions N;;, — Noyt = 1. For Ising
corner growth in three dimensions, Nj, — Ny, is also posi-
tive and grows with time as ¢'/2. This make the behavior
in (13) quite puzzling.

The other major challenges are to generalize from strict
corner growth to Ising growth, where adsorption at in-
ner corners and desorption from outer corners occur with
equal rates, and to equilibrium interfaces, where the des-
orption rate exceeds the adsorption rate. The corre-
sponding equilibrium shape has been determined both
in two [27] and three dimensions [28], and its shape fluc-
tuations have also been studied [29]. In analogy with the
conjectured evolution equations (12) for corner growth,
there may also exist an exact generalization of equilib-
rium limiting shapes [27, 28] in higher dimensions.
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