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Abstract

We demonstrate a novel time-domain method to probe electronic coherence in ensembles of cold

Rydberg atoms coupled via nearly resonant dipole-dipole interactions. Short laser pulses create

coherent superpositions of few-electron eigenstates which evolve under the influence of pulsed

electric fields. The pulses steer the dynamics, enhancing the probability for finding atoms in

np, rather than initially excited ns states. The enhancement reflects the underlying electronic

coherence which persists for >10µs, two orders of magnitude longer than previously measured

dephasing times in the same system. Simulations suggest that atom motion is responsible for the

eventual decoherence.

PACS numbers: 32.80.Ee, 34.20.Cf, 32.80.Qk
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Prospects for exploiting dipole-dipole (DD) interactions between Rydberg atoms for quan-

tum information processing [1, 2] have engendered considerable interest in cold Rydberg

gases. The generation and manipulation of the few- or many-body entanglement afforded

by these interactions is critical for such applications, implicitly demanding local electronic

coherence among atoms. In general, coherence does not require uniform coupling between

atoms, but inhomogeneities can make characterizing and exploiting it difficult. For example,

using rotary echoes, the optical excitation of a cold Rydberg ensemble was found to dephase

in < 1µs [3, 4]. Similarly, Ramsey interferometry performed after pulsed laser excitation of

DD-coupled atoms established that dephasing times were ∼100 ns [5]. These results reflect

the variation in DD interaction strength throughout an ensemble, but put only a lower limit

on the persistence of electronic coherence involving neighboring atoms. While this “micro-

scopic” coherence has been considered theoretically [6–8], to our knowledge it has not been

measured.

In this Letter we describe the first measurement of microscopic electronic coherence in

cold, DD-coupled Rydberg gases. We employ a time-domain method that is inspired by,

but distinct from, spin echo techniques [9]. Short laser pulses excite coherent superpositions

of few-electron eigenstates involving neighboring atoms. Due to the DD interaction, these

wavepackets evolve from initial configurations in which all Rydberg atoms are in s-states,

into those where there is some probability for finding atoms in p-states. Sequences of electric

field pulses modify the couplings between atoms and, accordingly, the composition of the

constituent few-electron eigenstates. Through the pulse sequence, constructive interference

enhances the production of p-state atoms. The decay in this enhancement provides a measure

of the multi-electron coherence which persists for >10µs.

Our measurements focus on the evolution of a cold Rb Rydberg gas in the presence

of tunable DD-interactions. We begin by considering the electron dynamics of isolated

atom pairs before extending the discussion to three or more coupled atoms. Envision two

Rydberg atoms, α and β, with eigenstates |S〉, |P 〉 and |S ′〉, |P ′〉, and transition dipole

moments µα ∼ 〈S|r|P 〉 and µβ ∼ 〈S ′|r|P ′〉, respectively. In the experiments, |S〉, |P 〉,

|S ′〉, and |P ′〉 correspond to |25s〉, |24p1/2〉, |33s〉, and |34p3/2, |mj |〉, respectively. The

energy E of an uncoupled atom pair in |P 〉|P ′〉, relative to that in |S〉|S ′〉, can be Stark

tuned through resonance (E = 0) using an external electric field [10]. When separated

by a distance R, atoms α and β are coupled by a tunable DD interaction V0 ∼ µαµβ/R
3.
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FIG. 1. Inset: Measured transition probability P as a function of detuning from resonance at

calculated densities ρ = 5 × 109 cm−3 (upper blue) and ρ = 2 × 109 cm−3 (lower red). The

two peaks centered at F = 3.0 and F =3.4 V/cm correspond to the |S〉|S′〉 ↔ |P 〉|P ′, |mj | =

1/2〉 and |S〉|S′〉 ↔ |P 〉|P ′, |mj | = 3/2〉 resonances, respectively. Near these resonances, E varies

approximately linearly vs F with a slope of 51 MHz/(V/cm) [11]. A and B mark the high and

low field detunings (±5.5 MHz) at which the coherence measurements (see Fig. 2) were performed.

Main: |S〉|S′〉 ↔ |P 〉|P ′, |mj | = 3/2〉 resonance width as a function of Rydberg density. The red

line shows the predicted width (upper density axis) assuming pure two-body interactions.

Ignoring much weaker, non-resonant van der Waals couplings involving other states, the

atom pair has two nearly degenerate eigenstates |+〉 = cos θ
2
|S〉|S ′〉 + sin θ

2
|P 〉|P ′〉 and

|−〉 = − sin θ
2
|S〉|S ′〉 + cos θ

2
|P 〉|P ′〉 where tan θ = 2V0/E. These eigenstates have energies

ǫ± = (E ± γ)/2, where γ =
√

E2 + 4V 2

0
, and exhibit a standard avoided level crossing as a

function of E, with an energy separation 2V0 at E = 0.

At t = 0, 70µK Rb atoms in a magneto-optical trap (MOT) are exposed to two, 5 ns dye

laser pulses with wavelengths of 484.1 nm and 481.6 nm. The lasers are tuned to excite atoms

from the upper 5p3/2 trap level to |S〉 and |S ′〉 in the presence of a weak electric tuning field,

F < 5V/cm. For narrow band excitation, the level shifts ǫ± between DD-coupled atoms

would inhibit excitation of any two atoms, initiating a Rydberg blockade [1]. However,

because the ∼ 100 MHz coherent bandwidths of our 5 ns pulses greatly exceed the Rydberg-

pair eigenstate splitting (2V0 < 10MHz, at the Rydberg densities ρ < 5× 109 cm−3 used in
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FIG. 2. (a) Measured transition probability as a function of total interaction time, T , for different

pulse sequences for ρ = 2× 109 cm−3. The solid curves show Pk for the base sequence k=1 (red)

and its repetitions, k =2(green), 4(purple), and 8(black). The dashed lines show P0 when the

atoms are held on the high (dashed blue) or low (dashed cyan) field side of the resonance (A and

B in Fig. 1) for the entire time T . (b) Inset: Signal enhancement χk vs. T obtained by dividing

the solid curves in (a) by the average of the dashed curves. Main: Enhancement decay rate vs. k

for the data shown in the inset.

the experiments), we observe no excitation suppression. Instead, isolated pairs are excited

to coherent superpositions of |+〉 and |−〉 eigenstates. The same electronic coherence that

underlies the entanglement established via the Rydberg blockade also defines the dynamics

of these two-electron wavepackets. Specifically, since the laser excitation proceeds through

the |S〉|S ′〉 character of the eigenstates in a time much shorter than π/V0 ∼1 µs, the initial

wavefunction for the Rydberg pair is Ψ(0) = |S〉|S ′〉. As long as coherence is maintained,

this wavefunction evolves according to the Rabi formula:

Ψ(t) = (cosφ− iη sinφ)|S〉|S ′〉+ iξ sinφ|P 〉|P ′〉 (1)

where φ = γt/2, ξ = 2V0/γ, η = E/γ, and γ is the Rabi frequency,.

We use the transfer of population from |S〉|S ′〉 to |P 〉|P ′〉 to characterize both the coupling

strength between atoms and the electronic coherence. To this end, state-selective field

ionization is employed to measure the probability P for finding atoms in |P 〉 and |P ′〉 as a

function of the detuning E (see Fig. 1) and time T after excitation (see Fig. 2).

Fig.1 shows P(E) for an interaction time, T ≃ 2µs. Two resonances, associated with

|mj | = 1/2, 3/2, are visible. Our measurements focus on the DD mediated dynamics near

the |mj | = 3/2 resonance, so we define E as the detuning relative to its center. As expected,

the resonance lineshapes broaden with increasing ρ due to the decrease in the most probable
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distance between nearest neighbor atoms, R0 = (2πρ)−1/3. Fig.1 also shows the |mj| = 3/2

resonance width (FWHM) as a function of ρ. The width increases linearly, exhibiting a

minimum width of ∼4 MHz for ρ → 0. This non-zero minimum is attributed to electric and

magnetic field inhomogeneities in the laser-atom interaction region. The measured widths,

including the inhomogeneous contribution, are in good agreement with previous experiments

[5].

According to Eq. 1, P = ξ2 sin2 γT/2 at a time T after excitation. The predicted

temporal modulations can be interpreted as Rabi oscillations due to the |S〉|S ′〉 ↔ |P 〉|P ′〉

coupling, or as a quantum beat between different modes in the evolving multi-electron

wavepacket. The oscillation amplitude, ξ2, is a Lorentzian function of E, representing a

resonance with a FWHM, 4V0 (see Fig. 1 inset). In the experiment γ and V0 vary randomly

with R for individual atom pairs. Consequently, the resonance lineshape is a cusp rather

than a Lorentzian [12]. Moreover, a monotonic increase and saturation, but no oscillations,

are observed in P(T ) (see Fig. 2). This does not imply an absence of coherence among

individual atom pairs, but instead is a reflection of macroscopic inhomogeneities in R.

The solid curve plotted with the data in Fig. 1 is the result of a calculation that considers

only isolated, stationary atom pairs. Ignoring spin, the initial pair state |S〉|S ′〉 has zero

angular momentum and the tunable DD interaction potential reduces to V0 =
√

2

3
µαµβ/R

3

with µα ≃ 490(a.u.) and µB ≃ 128(a.u.) [5, 13]. Using Eq. 1 and the nearest neighbor

distribution function for a random Rydberg ensemble of density ρ, we compute P(E) for

the ensemble. The solid curve in Fig. 1 is the FWHM of this lineshape, convoluted with

an inhomogeneous Gaussian contribution with a 4.2 MHz FWHM. The calculated density

at a given resonance width is ∼2.6× larger than that determined experimentally. This

discrepancy is comparable to the uncertainty in the Rydberg density measurement.

Of course, atoms in the experiment are not isolated in pairs and, in addition to the pri-

mary |S〉|S ′〉 ↔ |P 〉|P ′〉 interactions, DD-couplings mediating coherent exchange or “hop-

ping” processes involving three or more atoms (e.g. |S〉|S ′〉|P 〉 ↔ |P 〉|S ′〉|S〉, |P 〉|P ′〉|S〉 ↔

|P 〉|S〉|P ′〉, etc.) are also active [11, 14]. These beyond nearest neighbor interactions can

influence the system dynamics as well as the energy and delay dependence of our experimen-

tal observable, P. These exchange processes involve degenerate states only in the absence

of other position-dependent interactions. Thus, while they cannot be directly controlled via

electric field tuning, their common classification as “always resonant” is misleading.

5



Exchange complicates the electronic eigenstates and dynamics, but does not lead to deco-

herence among neighboring atoms. Near E = 0 the few-electron spectrum is characterized by

a large number of nearly degenerate, eigenstates which no longer have the simple form of the

|+〉 and |−〉 states defined above. Although the dynamics are more complex, following their

short pulse excitation the multi-electron wavepackets should still evolve coherently, with a

time-dependent transition probability P that reflects the energy spectrum and composition

of the constituent eigenstates.

We consider beyond nearest neighbor interactions by employing a numerical model in-

volving three identical, stationary, spinless S-atoms subject to pairwise couplings V0, V1 =

4

9
µA

2/R3, and V2 = 4

9
µB

2/R3 associated with tunable SS ↔ PP ′, and non-tunable SP ↔

PS and SP ′ ↔ P ′S, interactions, respectively. V1 and V2 are the exchange matrix elements

averaged over the orientation of the third atom relative to the line connecting the nearest

neighbor pair [13]. The Hamiltonian is diagonalized and the initial |S〉|S〉|S〉 wavepacket

is propagated to a delay T to compute P(E) for a given set of atom positions. The final

lineshape is constructed by integrating the individual P(E) determinations over the nearest-

and next-nearest-neighbor distribution functions for the ensemble. We find that the width of

the 3-atom lineshape is only 3% larger than the 2-atom result, but the maximum transition

probability is 30% greater. Apparently, exchange influences the dynamics, but the resonance

widths are dominated by 2-body, nearest neighbor interactions [7]. This conclusion agrees

with that reached through more complete calculations [7, 15] but differs from that drawn

from previous experiments [5, 11, 14] .

Upon repeating the Ramsey interference measurements of Anderson et al. [5], we find de-

phasing times similar to what they observed and attributed to multi-atom exchange. This de-

phasing, which does not imply microscopic decoherence, is due to the macroscopic variation

in exchange coupling strengths and accrues during times when the primary |S〉|S ′〉 ↔ |P 〉|P ′〉

interaction is tuned off resonance. On resonance, the energy shifts associated with strong

nearest neighbor interactions can partially suppress the exchange coupling to other atoms

[7]. An analogous effect, with the tunable DD interaction replaced by an rf field, has been

used to preserve Rydberg wavepacket coherence by dynamically decoupling the constituent

states from environmental noise [16].

Having characterized the impact and interplay of the tunable and non-tunable interactions

on the population transfer, we can investigate the multi-electron coherence of our system. In
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particular, we probe the microscopic coherence when atoms are tuned near DD-resonance.

Our method is insensitive to inhomogeneities in the dynamics caused by variations in DD-

coupling strength at different locations within the ensemble. We employ a series of electric

field pulses which modify the DD couplings between atoms, coherently manipulating the

composition and energies of the constituent multi-electron eigenstates. The pulse sequence

enhances P at the observation time if, and only if, the system evolves coherently.

For the measurement, atoms are laser excited in a field F ≃3.9 V/cm, well-detuned from

the |mj | = 3/2 resonance. F is then suddenly (∼ 2 ns) decreased to the high field wing of

the resonance profile (A in the inset of Fig. 1), switching-on the resonant coupling between

atoms. After a time T/2, the field is reduced again, projecting the system to a point of equal

transition probability on the low field side of the resonance (B in Fig. 1). The atoms interact

for an additional time T/2 before they are again far-detuned to the high field side of the

resonance where the final state distribution is measured. Figure 2 shows that this sequence

leads to a transition probability, P1, that is substantially greater than the probability P0

obtained when the atoms remain on either the high- or low-field side of the resonance for an

equivalent net interaction time T . Notably, if this base sequence is repeated k times for 2k

equal interaction intervals in a total time T , the signal enhancement χk = Pk/P0 increases

with k. Identical enhancements are observed when the high-to-low field-ordering of the pulse

sequences is reversed. However, no enhancement (χk = 1) is observed for highly asymmetric

time intervals in which, for example, the atoms are left at points A and B for T − 10ns

and 10 ns, respectively. Thus, the enhancement is not simply the result of the back and

forth traversal of the resonance. In all cases, χk(T ) decreases approximately exponentially,

approaching unity for large delays.

We can understand the source of the enhancement using the 2-atom model. According

to Eq. 1, when the atoms are detuned on one side of resonance, the |S〉|S ′〉 amplitude de-

velops an imaginary component proportional to η. This phase advance limits the maximum

achievable |P 〉|P ′〉 probability. Reversing the detuning (η → −η) initiates a phase slip that

counters the initial advance. The net result is an enhancement in the p-state transition prob-

ability. The effect is analogous to enhancement of optical frequency conversion efficiency

through quasi-phase-matching in a non-linear crystal. In our case, the phase correction is

performed directly in the time domain rather than through a spatial variation of the index

of refraction along a laser’s path.
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By consecutively applying the standard two-level transfer matrix responsible for Eq. 1,

with scaled detunings η = ±η0 at points A and B, the enhancement factor for the k = 1

sequence is easily computed. Assuming microscopic coherence is maintained throughout,

χ1 = 1 + η2
0
tan2 [γT/4], for any detuning, atom separation, and net interaction time T .

Thus, the signal enhancement survives integration over the distribution of nearest neigh-

bor separations in the MOT. Similar enhancements are predicted by the 3-atom numerical

model, indicating that the interference is not fundamentally altered by exchange interactions.

The calculated enhancement grows with the detuning, η0. Similar increases are observed

experimentally. However, p-state excitation via the |mj | = 1/2 resonance (see Fig. 1) lim-

its the maximum density and detuning for which the measurements are straightforward to

interpret. For the range of accessible detunings, both models yield χ1 ∼ 1.5 to 2, in good

agreement with observations. Provided the total population transfer probability has not

saturated near unity, both simulations also predict increases in χk with k, comparable to

what is seen in the experiment.

As described, the signal enhancement is due to constructive interference between the p-

state amplitudes acquired during the temporally separated interaction times. [17] Without

this interference, and the coherence that enables it, transporting the system from A to

B would have no effect on the net transition probability. The enhancement is observable

in spite of the non-uniform atom spacings which lead to variations in the multi-electron

dynamics and transition probabilities. Apparently, χk > 1 requires microscopic coherence,

not identical dynamics throughout the ensemble. Importantly, the decay of χk defines the

rate at which this coherence is lost. For the data in Fig. 2, this rate is 10-20 kHz, indicating

a coherence time of 8-16 µs for ρ ∼ 109cm−3. [18]

Notably, the loss of coherence reflected by the measured decay in χk is not predicted

by simulations which assume stationary atoms. In the experiments, atoms move due to

their thermal energy and mutual DD forces. For ρ = 2× 109cm−3, the most probable atom

separation is R ∼ 4µm and the rms relative velocity between the atoms is 0.2 µm/µs. In a

10µs interval, the separation between typical nearest neighbors changes by 50% due to their

thermal motion alone. This is 4× greater than that expected from DD forces. Because the

electronic and center of mass degrees of freedom are coupled by the DD-interaction, relative

atom motion introduces an explicit time-dependence in the few-body Hamiltonian which

serves as a source of electronic decoherence.
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FIG. 3. (a) Transition probabilities and (b) enhancement factors χk as a function of the total time

on resonance, T , calculated for different pulse sequences using a 3-atom model in which one atom

moves. The dashed line shows the average value of P0 computed for atoms remaining on the high

and low field sides of the resonance. The solid lines show k = 1 (red), k = 2 (green), k = 4 (violet)

and k = 8 (black).

To model the relative atom motion, we neglect the influence of DD forces but allow one

atom in a nearest neighbor pair to move along a line, toward or away from its partner,

with a constant speed v chosen at random from within the relative velocity distribution of

the ensemble. The 3-atom Hamiltonian is re-diagonalized in sufficiently small time steps

to propagate the system through the measurement sequence. Fig. 3 shows the results of

the 3-atom calculations for the experimental conditions used to obtain Fig. 2. Despite the

crudeness of the model, the simulations are in qualitative agreement with the data. First,

both the calculated and measured P0 curves increase as a function of T . Presumably this

increase is due to the broadening of the resonance profile and the concomitant incoherent

increase in the transition probability for atom pairs whose separations decrease during the

pulse. Second, the pulse sequences yield population transfers that increase more slowly, or

are approximately independent of T . Third, the simulated curves show a pronounced decay

in χk at a rate comparable to that observed in the experiment. This suggests that relative

atom motion is a significant contributor to the measured decoherence.

In summary, we have demonstrated a novel time-domain technique to probe microscopic

electronic coherence in the presence of resonant DD-interactions in a cold Rydberg gas. We

find coherence times that exceed the dephasing times measured using rotary echoes [3, 4]

and Ramsey interferometry [5] by one and two orders of magnitude, respectively. Numeri-

cal modeling indicates that the coherence is not compromised by beyond nearest neighbor

couplings. Rather, atom motion is primarily responsible for the eventual decoherence. Ex-
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perimentally there is some evidence that the decoherence rate is reduced when the system

is transported across resonance multiple times. The possibility of using pulse sequences to

dynamically decouple electronic and center of mass degrees of freedom may be pursued in

the future [19].
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