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We investigate theoretically the phase diagram of a spin-orbit coupled Bose gas in two-dimensional
harmonic traps. We show that at strong spin-orbit coupling the single-particle spectrum decomposes
into different manifolds separated by ~ω⊥, where ω⊥ is the trapping frequency. For a weakly
interacting gas, quantum states with skyrmion lattice patterns emerge spontaneously and preserve
either parity symmetry or combined parity-time-reversal symmetry. These phases can be readily
observed in a spin-orbit coupled gas of 87Rb atoms in a highly oblate trap.
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Spin-orbit (SO) coupling leads to many fundamental
phenomena in a wide range of quantum systems from
nuclear physics, condensed matter physics to atomic
physics. For instance, in electronic condensed matter sys-
tems SO coupling can lead to quantum spin Hall states
or topological insulators [1], which have potential ap-
plications in quantum devices. Recently, SO coupling
has been induced in ultracold spinor Bose gases of 87Rb
atoms [2] by the so-called “synthetic non-Abelian gauge
fields”. Combined with unprecedented controllability of
interactions and geometry in ultracold atoms, this manip-
ulation of SO coupling opens an entirely new paradigm
for studying strong correlations of quantum many-body
systems under non-Abelian gauge fields.

In this context, over the past few years there have been
great theoretical efforts to determine quantum states of
an SO coupled spinor Bose-Einstein condensate (BEC)
[3–9]. In a recent work by Wang et al. [6], two distinct
phases are identified for a homogeneous two-dimensional
(2D) spin-1/2 BEC. Depending on the relative magnitude
of intra-species (g) and inter-species (g

↑↓
) interactions, all

bosons can condense into either a single plane-wave state
(g < g

↑↓
) or a density-stripe state (g > g

↑↓
).

The purpose of this Letter is to show that the presence
of a harmonic trap, which is necessary in experiments,
can change dramatically the phase diagram of SO coupled
BECs. At strong SO coupling the single-particle spec-
trum decomposes into discrete manifolds, analogous to
discrete Landau levels. Non-trivial quantum states with
skyrmion lattices emerge when all bosons occupy into the
lowest manifold (LM). These properties are fundamen-
tally different from that of a homogeneous system. We
note that, in a previous work, the NIST group has exper-
imentally realized an artificial Abelian gauge field which
leads to the observation of vortex lattice in a non-rotating
87Rb condensate [10]. Our work represents an important
extention into the regime of non-Abelian gauge field in
which the spin degrees of freedom play an essential role.

Our main results are summarized in Fig. 1, which
shows the ground state as functions of interatomic inter-
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Figure 1: (color online). (a) Phase diagram of a trapped 2D

BEC with a strong SO coupling λ̃ = 20, where the single-
particle spectrum forms discrete manifolds. For the weak
interaction considered here, only the LM is occupied. The
phases I and II preserve, respectively, the parity and parity-
time-reversal symmetries. There are several sub-phases in-
dicated by A, A′ and B, which differ in the density profile
and/or angular momentum. The mean-field density patterns
in different phases of spin-up bosons are shown in Fig. 3. (b)
and (c) Phase diagram at weak SO coupling. Here the phases
are determined without the restriction to the LM approxima-
tion. The insets illustrate the density profiles of the two spin
components in phases IA and IIA.

action at a dimensionless SO coupling strength λ̃. By us-
ing mean-field theory and exact diagonalization, we find
that: (i) The ground state falls into two classes of quan-
tum phases, I and II, preserving respectively the par-
ity (P) and parity-time-reversal (PT ) symmetries. Both
symmetries are satisfied by the model Hamiltonian [see
Eqs. (1) below]. (ii) In each class, there are several sub-
phases (IA, IA′, IB and IIA, IIB) differing in the den-
sity distribution and/or total angular momentum. (iii)
The transition between different phases depends on inter-
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atomic interactions. At weak intra-species interactions
below a critical value, g < gc, the ground state is a half-
quantum vortex state (IA) if g < g

↑↓
and a superposi-

tion of two degenerate half-quantum vortex states (IIA)
otherwise. The phases IA and IIA vanish in the limit
of strong SO coupling, but dominate the phase diagram
in the opposite. When the intra-species interactions be-
comes larger (g > gc), there is an interesting reverse of
the symmetry class, i.e., interactions change the phase
IA into IIB and the phase IIA into IA′ and then IB. In
the phases IIB and IB, skyrmion lattices emerge sponta-
neously without rotation. (iv) At g = g

↑↓
, the phases are

ordered by quantum fluctuations. Using exact diagonal-
ization, we find that the phases follow those at g < g

↑↓
.

Model Hamiltonian and energy spectrum. - We con-
sider N -bosons in a 2D harmonic trap V (ρ) = Mω2

⊥ρ
2/2

with a Rashba SO coupling Vso = −iλR(∂yσ̂x − ∂xσ̂y),
where σ̂x,y,z are the Pauli matrices. The model Hamilto-
nian is given by H = H0 +Hint, where

H0 =

ˆ

drΨ+
[

−~
2∇2/(2M) + V (ρ) + Vso

]

Ψ,(1a)

Hint =

ˆ

dr
[

(g + g↑↓)n̂
2 + (g − g↑↓)Ŝ

2
z

]

/4 , (1b)

Ψ = [Ψ↑(r),Ψ↓(r)]
T denotes collectively the spinor Bose

field operators, and n̂, Ŝz = Ψ+
↑ Ψ↑±Ψ+

↓ Ψ↓. We define

two characteristic lengths, a⊥ =
√

~/(Mω⊥) for the har-
monic trap and aλ = ~

2/(MλR) for the SO coupling. The
dimensionless SO coupling strength can be then defined

as λ̃ = a⊥/aλ = (M/~3)1/2λR/ω
1/2
⊥ . The Hamiltonian

is invariant under two symmetry operations, associated
respectively with the anti-unitary time-reversal operator
T = iσyC, where C takes the complex conjugate, and the
unitary parity operator P = σzI, where I is the spatial
inversion operator. The Hamiltonian is also invariant un-
der the combined PT operator, which is unitary since P
and T anti-commute with each other, i.e., {P , T } = 0.

In polar coordinates (ρ, ϕ), the single-particle eigen-
wavefunctions of H0 may be written in the form, Φm(r) =
[φ↑(ρ)e

imϕ, φ↓(ρ)e
i(m+1)ϕ]T , which is energetically de-

generate with its time reversed partner T Φm(r) =
[φ↓(ρ)e

−i(m+1)ϕ,−φ↑(ρ)e
−imϕ]T . This degeneracy is a

direct consequence of the Kramers’ Theorem. Here we
may restrict m to be non-negative integers, as a nega-
tive m state can be regarded as the time reversal part-
ner for a state with m ≥ 0. In this construction, Φm

and T Φm are both parity eigenstates with corresponding
eigenvalues (−1)m and (−1)m+1, respectively. However,
they break the PT symmetry. The lowest single-particle
state occurs at m = 0 and has a half-quantum vortex
configuration [4]. Due to the degeneracy, any linear su-
perposition of Φm and T Φm — which breaks the parity
symmetry — is also an eigenstate of the system. In par-
ticular, we may choose the equal-weight superposition as
(Φm + T Φm)/

√
2 which can be easily shown to be eigen-

states of PT .
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Figure 2: (color online). (a) Single-particle energy spectrum.
The lines show the empirical Eq. (2). (b) The W -function for
the lowest four single-particle states in the LM.

The wavefunctions and the corresponding eigenener-
gies can be found numerically. At large SO coupling
(i.e., λ̃ > 5), to a good approximation we find numer-
ically that the low-lying spectrum forms discrete mani-
folds with spacing ~ω⊥(indexed by an integer n ≥ 0),

ǫnm ≃
[

−λ̃2 + (2n+ 1) +m (m+ 1)/λ̃2
]

~ω⊥/2 . (2)

There are about 2
√
2λ̃ levels within each manifold with

the smallest level spacing ∆E = ~ω⊥/λ̃
2. The discrete

manifolds of spectrum are similar to the well-known Lan-
dau levels, formed when a charged particle moves in mag-
netic fields. However, the reasons for their formation are
very different. In our case of large SO coupling, without
trap the spectrum is characterized by a continuous mo-
mentum k and is given by ǫk = [−λ̃2/2+(k± λ̃)2/2]~ω⊥,
with infinite degeneracy along the azimuthal direction.
The inclusion of trapping potential quantizes the ra-
dial motion for k and the azimuthal motion, giving the
standard quantization contribution of (n+ 1/2)~ω⊥ and

(m+ 1/2)
2
/(2λ̃2)~ω⊥ to the energy, respectively.

For a weakly interacting BEC with gN, g↑↓N ≪ ~ω⊥,
only the LM is occupied. It is thus convenient to expand
the field operator Ψ =

∑

m Φm(r)am, where Φm(r) is the
single-particle wavefunctions at the LM with energy ǫm.
The many-body Hamiltonian may then be rewritten as,

H =
∑

m

ǫma+mam +
∑

ijkl

Vijkla
+
i a

+
j akal, (3)

where the interaction elements Vijkl can be calculated
straightforwardly for the contact interatomic interac-
tions. We solve Eq. (3) numerically by using both mean-
field theory [11] and exact diagonalization [12], for a con-
served total angular momentum

∑

m(m + 1/2)a+mam =
Nmtot. Within mean-field, we replace am by a complex
number N1/2cm and minimize the GP energy EGP /N =
∑

m ǫm |cm|2+(N−1)
∑

ijkl Vijklc
∗
i c

∗
jckcl, under the con-

straints
∑

m |cm|2 = 1 and
∑

m(m + 1/2) |cm|2 = mtot.
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In practice, we truncate the angular momentum to |m| ≤
mc (up to mc = 16).

Symmetry of condensate states. - In the presence of
the interaction represented by Eq. (1b), the many-body
Hamiltonian still possesses both P and PT symmetries.
As we have shown above, for a non-interacting system,
we may choose the single-particle ground state to be an
eigenstate of P , or of PT , or of neither operator. In the
mean-field level, this freedom of choosing different sym-
metry eigenstates may be removed by inter-atomic in-
teractions. In other words, the symmetry of condensate
states would be determined spontaneously by interaction.
We have found that in the weakly interacting limit we are
interested in here, the ground state is either an eigen-
state of P , or that of PT . Which symmetry the ground
state will possess can be determined in the following way.
Let us consider an eigenstate of P with wavefunction
ΦP = [φ↑(r), φ↓(r)]

T . The corresponding eigenstate of
PT can be constructed as ΦPT = (ΦP ±T ΦP)/

√
2. The

mean-field energy difference between these two states is
determined by the S2

z term in Eq. (1b) which breaks the
spin rotational symmetry in the interaction Hamiltonian:

∆Esp (Φ) = E(ΦPT )−E(ΦP) = (g↑↓− g)W (Φ) /4, (4)

where W (Φ) ≡
´

dr[( |φ↑|2 − |φ↓|2)2 − (φ↑φ↓ + φ∗
↑φ

∗
↓)

2].
The ground state will be a P-eigenstate if ∆Esp (Φ) > 0
for which we have nσ(r) = nσ(−r), or a PT -eigenstate
if ∆Esp (Φ) < 0 for which we have n↑(r) = n↓(−r). The
W -functions of several parity eigenstates are shown in
Fig. 2(b). Equation (4) also shows that the symmetry of
the ground state is sensitive to the relative magnitude of
the interaction parameters g and g↑↓.

Phase diagram in the LM. - Our symmetry argument
suggests that all the condensate states could be classified
by its P or PT symmetry, to be referred to respectively
as phases I and II hereafter. We now check numerically
this argument in the quantum Hall like regime with all
bosons occupying into the LM, as shown in Fig. 1(a) for
λ̃ = 20. The characteristic density distributions for spin-
up bosons in each phase are shown in Fig. 3.

At sufficiently weak interactions, where the character-
istic interaction energy g(N − 1)a2⊥ is smaller than the

lowest intra-manifold spacing ∆E = ~ω⊥/λ̃
2, only the

ground single-particle state is occupied. The condensate
state is thus either half-quantum vortex states of Φ0 (or
T Φ0) or their superposition. As W (Φ0) > 0 as shown
in Fig. 2(b), we conclude that the ground state is a PT -
eigenstate for g > g↑↓ (IIA) and it is a half-quantum vor-
tex state (a P-eigenstate) for g < g↑↓ (IA). Their spin-up
density patterns are shown in Figs. 3(a) and (d), respec-
tively.

When the interaction becomes larger, more and more
single-particle states are occupied. The occupation of
the first excited single-particle state (Φ1 and T Φ1) oc-
curs at gc(N − 1)a2⊥ ≃ 0.0367~ω⊥, where the critical
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Figure 3: (color online). Density patterns of spin-up bosons in
the different ground states at three intra-species interactions
g(N − 1)a2

⊥: (a,d) 0.02~ω⊥, (b,e) 0.1~ω⊥, and (c,f) 0.2~ω⊥.

interaction strength gc is determined from the equation
ǫ0+(N−1)V0000 = ǫ1+(N−1)V1111. As W (Φm) < 0 for
m ≥ 1, we find an interesting reverse of the phase dia-
gram when g > gc: the P-preserving phase (IA) changes
into a PT -preserving phase (IIB) at g < g↑↓, while the
PT -preserving phase (IIA) changes into a P-preserving
phase (IA′ and IB) if g > 0.2g↑↓. The phases IA′ and
IB differ in the total angular momentum mtot and den-
sity distribution. In Phase IB, mtot is suppressed to
zero by large interatomic interactions. Note that in the
phases (IIB) and (IB), we observe regular lattice pat-
terns. In particular, a hexagonal lattice form gradually
in the phase IIB, as shown clearly in Figs. 3(e) and (f).
In Fig. 4, we show the corresponding spin texture of the
state, from which one can see that the system represents
a lattice of skyrmions. Skyrmion lattice can be generated
by rotating a spinor condensate [13]. Here the skyrmion
texture is induced by the SO coupling without rotation.

The symmetry of the ground state at g = g↑↓ can not
be determined within mean-field theory, since in this case
∆Esp (Φ) = 0 [see Eq. (4)] and the energy becomes in-
variant for different mtot. However, it can be ordered by
quantum fluctuations [4], which are well captured by ex-
act diagonalization. We have calculated the energy as a
function of mtot at g(N − 1)a2⊥/(~ω⊥) = 0.02 and 0.1 for
N = 4, 8, and 12. With increasing N , the exact diagonal-
ization result approaches the mean-field prediction. We
find that the ground state at g(N − 1)a2⊥ = 0.02~ω⊥ has
a spontaneous angular momentum mtot = −1/2 or +1/2,
while the ground state at g(N − 1)a2⊥ = 0.1~ω⊥ occurs
at mtot = 0. Therefore, we identify that the phases at
g = g↑↓ follow those at g < g↑↓. This is in agreement
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with the result of Ref. [4], which employs a different “or-
der from disorder” argument.

Phase diagram beyond LM. - So far we have clarified
the phase diagram at a particular SO coupling λ̃ = 20 in
the weakly-interacting LM regime. However, the qualita-
tive picture of diagram may persist beyond the regime of
LM, as far as our symmetry argument holds. To check
this, we performed a direct numerical calculation based
on the full Gross-Pitaevskii (GP) equation derived from
Eqs. (1) without making the LM assumption. In the
regime as shown in Fig. 1(a), the results are in good
agreement with the LM calculation. At larger interac-
tion strength when higher manifolds get mixed in the
ground state, we have found from the GP calculation
that Phase IIB in Fig. 1(a) will change to a density-stripe
phase with P symmetry, while Phase IB will change to
a plane-wave phase with PT symmetry. The density-
stripe and the plane-wave phases have been shown to be
the mean-field ground state for a homogeneous system
[6]. For the trapped system as studied here, at large
interaction strength, the effect of the trap becomes less
important and our results are therefore consistent with
those reported in Ref. [6]. With decreasing λ̃, we antic-
ipate that the phases IA and IIA will gradually become
dominant in the diagram, as we find numerically that
gc ∝ 1/λ̃2 increases very rapidly. The skyrmion lattice
phase, related to the LM formation, may disappear. This
is confirmed by the GP calculation for smaller SO cou-
pling and the results are represented in Fig. 1 (b) and
(c). The half-quantum vortex state and its superposition
dominate over a much larger parameter space as com-
pared to the large SO coupling case. A more detailed
study of the complete phase diagram and the properties
of different phases will be presented elsewhere [14].

Experimental relevance. - We finally consider the ex-
perimental feasibility. A Rashba SO coupling can be in-
duced in spinor 87Rb gases [2]. The interaction strengths
of 87Rb atoms may be tuned by properly choosing the
parameters of the laser fields that induce the SO cou-
pling [8]. The two-dimensionality in such system has now
been routinely realized by imposing a strong harmonic
confinement V (z) = Mω2

zz
2/2 along the z-direction with

ωz ≫ ω⊥. The critical temperature for an ideal 2D SO
BEC is given by Tc = (cλ/π)

√
3N~ω⊥/kB, where the

prefactor cλ < 1 takes into accout the suppression due
to the SO coupling. Taking parameters from a recent ex-
periment [15] with ω⊥ = 2π × 20.6 Hz and N ∼ 105, we
find at λ̃ = 10, cλ ∼ 0.6 and kBTc ≃ 120 nK. Experimen-
tally, BEC temperature below 0.5 nK has been recorded
[16], which is also lower than ~ω⊥/kB. The mean-field
LLL regime is therefore readily attainable with current
technologies.

Conclusion. - In summary, we have investigated the
phase diagram of a spin-orbit coupled spinor BEC in
harmonic traps, by using mean-field theory and exact
diagonalization method. We have predicted that the con-
densate states preserve the parity or parity-time-reversal
symmetry and exhibit spontaneous vortex and skyrmion
lattice structure in the lowest energy manifold which is
induced by strong spin-orbit coupling. Our results are
valid for weak correlations with large number of bosons.
Strongly correlated states, analogous to the fractional
quantum Hall states, would emerge with small number
of bosons [17]. These can be addressed using exact diag-
onalization method in future studies.
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Note added. - When our manuscript was under re-
view, we became aware of a preprint [18], in which the
authors addressed the same problem at g = g↑↓.
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