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We propose a general method for optical control of magnetic Feshbach resonances in ultracold
atomic gases with more than one molecular state in an energetically closed channel. Using two
optical frequencies to couple two states in the closed channel, inelastic loss arising from spontaneous
emission is greatly suppressed by destructive quantum interference at the two-photon resonance,
i.e., dark-state formation, while the scattering length is widely tunable by varying the frequencies
and/or intensities of the optical fields. This technique is of particular interest for a two-component
atomic Fermi gas, which is stable near a Feshbach resonance.

Ultracold atomic gases with controllable interactions
are now widely studied by exploiting collisional (Fesh-
bach) resonances [1]. In contrast to Bose gases, which
suffer from three-body inelastic processes near a reso-
nance, two-component Fermi gas mixtures are stable as
a result of the Pauli principle, and can be rapidly cooled
to quantum degeneracy by evaporation in the resonant
regime [2]. Typically, in a Feshbach resonance, an exter-
nal magnetic field controls the interaction strength be-
tween spin-up and spin-down atoms, by tuning the energy
of an incoming, colliding atom pair into resonance with
that of a bound molecular state in an energetically closed
channel [3, 4]. Optical tuning methods offer advantages
over magnetic tuning, such as rapid temporal control and
high resolution spatial control of the interaction strength
near a Feshbach resonance, opening many new fields of
study, such as nonequilibrium strongly interacting Fermi
gases [5]. The use of electromagnetically induced trans-
parency (EIT) to control Feshbach resonances was sug-
gested by Harris [6]. Optical control of Feshbach reso-
nances has been explored previously in Bose gases [7, 8]
and currently is receiving substantial attention [9]. Opti-
cal Feshbach resonances (OFR), which employ photoas-
sociation light to drive a transition from the continuum
of the incoming atom pair state to an excited molecular
bound state, has been proposed and experimentally ob-
served [8, 10–14]. However, light-induced inelastic colli-
sions and the accompanying loss limit its practical appli-
cability. Submicron-scale spatial modulation of an inter-
atomic interaction has been observed in an alkaline-earth
atomic condensate [15]. Recently, Rempe and coworkers
have used a single optical field to control the scattering
length near a magnetic Feshbach resonance by driving
a transition between a ground state in the closed chan-
nel and an excited molecular state. In this method, a
large laser intensity and a large frequency detuning are
required for suppressing the light-induced loss [9]. OFR
also has been studied by using a narrow intercombina-
tion line of a bosonic gas 88Sr, with the laser frequency
tuned far away from resonance [16]. Unfortunately, all of
these methods suffer from limited tunability of the scat-
tering length as well as loss and heating, which arise from

light-induced inelastic collisions.

In this Letter, we suggest a general “dark-state” opti-
cal method for widely controlling the interaction strength
near a magnetic Feshbach resonance, while suppressing
spontaneous scattering by quantum interference, in ultra-
cold atomic gases with at least two molecular states in
the closed channel. In a Fermi gas near a broad Feshbach
resonance, this method yields a double suppression of the
spontaneous scattering rate, as the probability of occu-
pying the closed channel molecular state near and above
resonance has been measured to be very small, ≤ 10−5

in 6Li [17].
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FIG. 1: Scheme for “dark-state” optical control of a Feshbach
resonance using two closed-channel molecular states. Optical
fields of frequencies ω1 and ω2 and Rabi frequencies Ω1 and
Ω2, respectively, couple ground singlet molecular states |g1〉
and |g2〉 to the excited molecular state |e〉; Vhf is the hyperfine
coupling Vhf between the incoming atomic pair state in the
open (triplet) channel and |g1〉, which is responsible for a
magnetically controlled Feshbach resonance.

The basic scheme, Fig. 1, is illustrated for a pair of
atoms in two hyperfine states (denoted spin-up and spin-
down), which undergoes an s-wave collision in the ground
electronic state triplet molecular potential (open chan-
nel). The hyperfine interaction couples the scattering
continuum of the open channel to a bound singlet vibra-
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tional state |g1〉 in the closed channel. An applied bias
magnetic field B tunes the total energy of the colliding
atom pair downward, near |g1〉, producing a collisional
(Feshbach) resonance. A second molecular ground state
|g2〉 is not coupled to the open channel; For example, |g2〉
can be a different singlet vibrational state. Two optical
fields with frequencies ω1 and ω2 couple |g1〉 and |g2〉 to
the electronically excited singlet vibrational state |e〉. To
determine the s-wave scattering length in the presence of
the light fields, we use a method similar to that employed
by Fano [18].
We write the Hamiltonian as

H =H ′
hf − µzB + Eg1 |S1, g1〉〈S1, g1|+ Eg2 |S2, g2〉〈S2, g2|

+ Ee|Se, e〉〈Se, e|+
p2

m
|T, k〉〈T, k|+Hint (1)

where the optical interaction Hamiltonian is

Hint = −h̄Ω1 cos(ω1t)|g1〉〈e| − h̄Ω2 cos(ω2t)|g2〉〈e|+ h.c.

Here, Ej (j = g1, g2, e) is the molecular internal energy
and µz the magnetic dipole moment operator. H ′

hf is the
hyperfine interaction with matrix elements between the
triplet T and singlet states S1,2 given by 〈S1|H

′
hf |T 〉 =

Vhf and 〈S2|H
′
hf |T 〉 = 0. The energy of the triplet state

is magnetic field dependent, 〈T |(H ′
hf − µzB)|T 〉 ≡ ET .

Ω1,2 =
〈e|d|g1,g2〉E1,2

h̄ are the Rabi frequencies correspond-
ing to the dimer transitions |g1〉 → |e〉 and |g2〉 → |e〉,
respectively.
The time-dependent wavefunction takes the form

|ψE(t)〉 = c1|S1, g1〉+ c2|S2, g2〉+ ce|Se, e〉
∫

k′ 6=k

d3k′cT (k
′)|T, k′〉+ c̃T (k)|T, k〉. (2)

Here c̃T (k)|T, k〉 represents the chosen incoming state
with energy E = ET +h̄

2k2/m, where k is the wavevector
for the relative momentum of the colliding atoms.
We take cj = bje

−i[E+h̄ω1δej−h̄(ω2−ω1)δ2j ]t/h̄ (where j =
1, 2, e, T ). Using the rotating wave approximation and
assuming that the amplitudes bj of the molecular states
|g1〉, |g2〉 and |e〉 vary slowly compared compared to γe
and |Ω1|

2/(∆e − iγe/2), we obtain

0 =∆gb1 −
Ω∗

1

2
be +

∫

k′ 6=k

d3k′g(k′)bT (k
′) + g(k)b̃T (k) (3.a)

0 = δb2 −
Ω∗

2

2
be (3.b)

0 = − (∆e +
iγe
2

)be −
Ω1

2
b1 −

Ω2

2
b2 (3.c)

0 = bT (k
′) (ET +

h̄2k′2

m
− E)/h̄+ g(k′)b1, (3.d)

where g(k) ≡ Vhf 〈k|g1〉/h̄. Here, ∆g = (Eg1 −E)/h̄ and
the single photon detuning is ∆e = ω1 − (Ee − E)/h̄.
The two-photon detuning is δ ≡ (ω2−ω1)− (E−Eg2)/h̄.
The radiative decay rate of the molecular excited state
is γe = 2/τspont, where τspont is the atom spontaneous
lifetime. When the hyperfine coupling between |g1〉 with
the atomic pairs is strong, as occurs near a broad s-wave
Feshbach resonance, adiabatic conditions may be diffi-
cult to achieve for bosons, which suffer from three body
collisional loss, but are readily achieved for fermions.
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FIG. 2: Scattering length as a function of the effective one-

photon detuning δ in units of γe. Real a
′

/abg (Blue curve)

and imaginary a
′′

/abg (Red curve). The parameters used here
are for 6Li: ∆B = 300 G, ∆µ/h̄ = 2µB/h̄ = 2π×2.8 MHz/G,
γe = 2π × 12 MHz, and abg = −1405 a0; We take Ω1 = 0.8γe,
Ω2 = 2γe, ω2 = ωeg2 , B −B0 = 2 G.

The steady state solutions for the molecular ampli-
tudes determine be in terms of b1, which then determines
the ratio b1/b̃T . Eq. (3.d) yields

bT (k
′) =

g(k′)

E − ET − h̄2k′2

m

b1. (4)

When the interatom distance r is large, the molecular
wavefunctions → 0 and the continuum state |k〉 takes
its asymptotic form ∝ sin(kr + δbg)/kr, where tan δbg =
−kabg is the phase shift arising from the background
scattering in the triplet potential. Inserting eq. (4) into
eq. (2), the scattering state |ψsc〉 is given by

|ψsc(r → ∞)〉 = sin(kr + δbg + δres)
b̃T
r
|T 〉, (5)

where δres = arctan(2π
2mkg(k)
h̄2

b1
b̃T

) is the phase shift aris-

ing from the coupling of the incoming continuum atoms
state and the vibrational states of the singlet potentials.

Using the definition of the scattering length, a =
− limk→0(

δbg+δres
k ), the complex-valued s-wave scatter-

ing length, a = a′ + ia′′, takes the simple form
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a = abg +
2π2g(k)2m/h̄2

E − Eg1 −
∫

k′ 6=k

d3k′ g(k′)2

E−ET− h̄2k′2

m

+
h̄δΩ2

1
/4

(∆e−iγe/2)δ−Ω2

2
/4

∣

∣

∣

∣

∣

k→0

. (6)

For Ω1 = 0, Eq. 6 immediately yields the well-known
result for a magnetically induced Feshbach resonance

a = abg

(

1−
∆B

B −B0

)

. (7)

Here the energy detuning is −∆µ(B −B0) = E − Eg1 −
∆E(k → 0), where ∆µ is the difference between the
magnetic moments of an atom pair and a molecule in
state g1 and B0 is the resonant magnetic field. The
energy shift arising from the hyperfine coupling of |g1〉

to the continuum is ∆E(k) ≡
∫

k′ 6=k

d3k′ g(k′)2

E−ET− h̄2k′2

m

and

∆B = 2π2g(k)2m/h̄2

abg∆µ |k→0 is the resonance width. In gen-

eral,

a′ = abg

(

1− β
Γ2(4∆0Γ2 − Ω2

1δ) + (γeδ)
2∆0

4(∆0Γ2 − δ|Ω1|2/4)2 + (∆0δγe)2

)

, (8)

where β = ∆B∆µ/h̄ and Γ2 = ∆eδ − Ω2|
2/4.

The two body loss rate constant arising from optical
scattering, K2(m

3/s) = −8πh̄ a
′′

/m is

K2 =
γeδ

2|Ω1|
2α

4(∆0Γ2 − δ|Ω1|2/4)2 + (∆0δγe)2
, (9)

where α = 4πabg∆B∆µ/m. We see that K2 is sup-
pressed by the square of the two photon detuning δ for
∆0 = ∆µ(B − B0)/h̄ 6= 0. Actually, the Ω1 field also
weakly drives transitions of the incoming atom pair states
(mostly triplet) to the excited molecular state |e〉 (sin-
glet), with a small Rabi frequency fΩ1, where f << 1.
Near the Feshbach resonance, where ∆0 is small, we
find that the corresponding photoassociation rate is sup-
pressed. Further, one can show that even including pho-
toassociation, the two body loss is still proportional to
δ2 and is thus greatly suppressed. Interference in the
f -dependent term causes a minimum in the photoasso-
ciation rate [19], which we will discuss in more detail
elsewhere.

The s-wave scattering length and corresponding loss
as a function of the effective two-photon detuning δ/γe
are shown in Fig. 2, using parameters for 6Li. When the
effective two-photon detuning δ is exactly zero, there is
a minimum of the loss. If the decay rate between state
|g1〉 and |g2〉 is negligible, as is the case in our scheme,
the imaginary part of eq. (6) is zero, as for EIT, where
the loss is completely suppressed. For these conditions,
the adiabatic solutions for the molecular amplitudes b2
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FIG. 3: Real a
′

/abg and imaginary a
′′

/abg components of the
scattering length as a function of Ω2/γe for Ω1 = 5 γe, and
δ = 0.05 γe. All other parameters are the same as in Fig. 2:
The solid blue line is the scattering length without the laser
fields (magnetic Feshbach resonance); The dashed orange line
denotes a′′ = 0. Inset: Loss ratio between the “dark-state”
scheme and a typical single laser scheme (where Ω2 = 0) as a
function of Ω2/γe.

and be in terms of b1 are

be = 0, (10a)

b2 = −
Ω1

Ω2
b1. (10b)

The bound-state probability |b1|
2 can be obtained using

the normalization condition, and is related to the molec-
ular fraction measured in Ref. [17]. Eq. 10a clearly shows
that there is no population for the excited molecular state
|e〉: Atom pairs are completely trapped in the two ground
molecular states, which is a consequence of quantum in-
terference, i.e., a “dark” state.

The dark-state method enables control of the scatter-
ing length with very small loss by changing the Rabi fre-
quencies Ω1 and Ω2 for a fixed magnetic field. Fig. 3
shows a

′

and a
′′

in units of the background scatter-
ing length abg as a function of the Rabi frequency Ω2

at ω2 = ωeg2 , two-photon detuning δ = 0.05 γe and
Ω1 = 5 γe. The scattering length dramatically changes
by ≃ 150abg as the Rabi frequency Ω2 is increased. The
scattering length also can be made positive or negative,
depending on whether the initial value of magnetic field
is set to the BEC side (below) or the BCS side (above)
the Feshbach resonance. The inset shows the loss ratio
a

′′

(Ω2)/[a
′′

(Ω2 = 0)] between the “dark-state” scheme
and typical single laser driving scheme (Ω2 = 0) as a
function of Ω2/γe, demonstrating that the loss can be
greatly suppressed using “dark” states in the closed chan-
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nel, compared with previous methods, where a control
field with only one frequency is used [9]. For example, us-
ing the dark-state method with Ω2 = 3 γe, the loss is two
orders of magnitude smaller than the single field method
of Ref. [9]. In addition, by dynamically changing Ω2 and
Ω1, stimulated Raman adiabatic passage (STIRAP), can
be used for coherent transfer of the populations between
g1 and g2, which is very important in the formation of
the ro-vibrational ground molecules.

FIG. 4: Scattering length as a function of B − B0 for fixed
laser parameters Ω1 = 8γe, Ω2 = 12γe, ω1 = ωeg1 , ω2 = ωeg2 .

All other parameters are the same as in Fig. 2: (a) a
′

/abg (b)

a
′′

/abg.

The dark state method also enables control the mag-
netic field dependence of the scattering length for fixed
laser parameters, as shown in Fig. 4 where the real
and imaginary parts of the scattering length, a

′

/abg and

a
′′

/abg, are plotted as a function of B − B0. The plot
shows a three peak structure, with a very narrow central
resonance, characteristic of the dark-state method, which
permits large changes in the scattering length for small
changes in B. In contrast, using a single field control
method [9], there are two broad resonances and corre-
sponding losses arising from typical Autler-Townes (AT)
doublets. The loss shows three peaks, similar to an EIT
medium inside an optical cavity, where there are three
transmission peaks: one narrow central peak correspond-
ing to the “dark” state and two side peaks corresponding
to dressed Rabi splittings [20].

The dark state method is readily implemented in
fermionic 6Li, where |g1〉 corresponds to the highest lying
38th vibrational state, located 1.58 GHz below the sin-
glet continuum of the ground electronic (X1

∑+
g ) state.

In this case, we can take |g2〉 to be 37th vibrational state,
located 53.5 GHz below |g1〉. The optical frequencies
can be generated by frequency offset locking two diode
lasers to a cavity. For comparison, in bosonic 85Rb,
the two highest lying vibrational states are located 195
MHz and 1.53 GHz below the singlet continuum. In this
case, both frequencies can be generated by modulation
of a single laser source. For the excited electronic state
of 6Li (A1

∑+
u ), we take |e〉 to be the v

′

= 68 vibra-
tional state, which has the largest Franck-Condon factor
with |g1〉 [17, 21]. The transition wavelength is 673.7

nm, compared to 671.0 nm for the atomic line. The
Rabi frequency for the molecular transition g1 → e is
Ω1 ≃ 0.59MHz

√

I(mW/cm2) [17, 21], and the sponta-
neous decay rate is γe ≃ 12 MHz. Finally, the back-
ground scattering length is abg = −1405 a0 [22].
In the conclusion, we have shown that the scattering

length near a magnetic Feshbach resonance can be widely
controlled and manipulated using a “dark” state optical
method, when there is more than one molecular state in
the closed channel. In contrast to previous single opti-
cal field methods, the closed-channel dark-state approach
employs destructive quantum interference, arising from
two closely-spaced optical transitions, to greatly suppress
the two-body light-scattering induced loss and heating of
the atomic gas. The method has important applications
in ultracold quantum gases, enabling rapid temporal and
high resolution spatial control of interactions and stud-
ies of nonequilibrium dynamics on fast time scales, as
well as studies of the dynamics unstable systems, such
as Bose gases near Feshbach resonances and three-state
Fermi gases.
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