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We demonstrate a self-contained methodology for predicting conductance histograms of atomic
and molecular-scale junctions based on a statistical ensemble of simulated contact ruptures. Fast
classical molecular dynamics simulations are combined with accurate density functional theory calcu-
lations predicting both quantum transport properties and molecular dynamics force field parameters.
The methodology is verified by detailed comparison with transport experiments on atomic-sized in-
dium nanojunctions. Beside the measurement of conductance histograms the statistical distribution
of individual channel transmission eigenvalues is also determined by fitting the superconducting
subgap features in the I-V curves for a large ensemble of nanocontacts. The remarkable agreement
in the evolution of the channel transmissions demonstrates that the simulated ruptures are able to
reproduce a realistic statistical ensemble of contact configurations. In contrast, reference simulations
on selected ideal geometries show strong deviations from the experimental observations. Our results
demonstrate the importance of a statistical approach not only in experiment, but also in theoretical
simulations.
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Nanostructures, in which the current flows through
single atoms or single molecules are ideal test systems
to demonstrate the behavior of matter at the ultimate
atomic size limit for potential electronic applications.
Experimentally, such tiny structures can be constructed
using various approaches, including break junction tech-
niques, where an atomic-scale junction is created during
the controlled mechanical elongation of a metallic wire
[1, 2]. In the most common experiment the evolution of
the conductance is monitored during the repeated open-
ing and closing of the nanojunction, and the captured
conductance-versus-electrode-separation traces are ana-
lyzed by conductance histograms [1, 2]. Peaks in the
histogram reflect the conductance of stable, frequently-
occurring atomic-scale junction configurations. To gain
more information, conductance histograms can be sup-
plemented by the study of nonlinear features in the I-
V characteristics of the junction [3, 4], noise measure-
ments [5], or more advanced statistical analysis of the
conductance traces [6]. In all these measurements it is a
fundamental ingredient to respect the stochastic nature
of nanocontact formation dynamics, and accordingly to
perform experiments on a broad statistical ensemble of
junctions.

To draw a more complete microscopic picture, all these
experimental inputs should be compared with the re-
sults of theoretical calculations. Atomic-sized or molec-
ular nanojunctions are commonly described by ab initio
simulations based on density functional theory (DFT)
[2]. However, the computational resources of fully DFT-
based simulations of rupture dynamics [7] are highly de-

manding, therefore DFT calculations are most commonly
restricted to the study of a small number of selected ideal

geometries, which are chosen to match the presumably
most probable experimental contact configurations [8, 9].
To better describe the stochastic nature of contact for-
mation and to catch the statistically relevant features,
it is desirable to simulate a large statistical ensemble
of contact ruptures. For this a proper combination of
fast classical molecular dynamics (MD) simulations [10–
12] with precise quantum mechanical calculations of the
conductance may provide a reasonable compromise. Re-
cently, a detailed analysis of theoretical conductance his-
tograms was performed, utilizing a simpler tight-binding
parameterizations of the underlying mean-field Hamilto-
nian [13, 14]. In this case, molecular-dynamics force fields
were calculated using semi-empirical potentials derived
from effective medium theory, whereas tight-binding pa-
rameters were obtained from different approach by fit-
ting to the band structures of bulk materials. Such an
approach is reasonable, provided bulk parameters can
be transferred to nanojunctions, where many properties
are determined by atoms on surfaces or in other low-
symmetry positions. Since this pioneering work theoreti-
cal conductance histograms were not yet implemented in
the field of molecular electronics.

In what follows, we demonstrate a methodology for
predicting conductance histograms and other statisti-
cal properties, which combines the best features of the
above approaches. A statistical ensemble of contact rup-
tures is simulated by classical MD calculations, and af-
terwards the underlying mean field Hamiltonian is eval-
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uated for all the contact configurations by DFT using
the local density approximation. The calculations are
performed by the SIESTA code [15]. To provide a self-
contained method the force field parameters of the MD
simulations are obtained by fitting to the results of the
DFT calculations for some model geometries. Finally the
conductance of all the configurations is calculated by a
Green’s function based evaluation of the Landauer for-
mula G = 2e2/h

∑
i τi [16, 17], where τi represents the

transmission probabilities for the conductance eigenchan-
nels of the contact.

We validate the methodology by performing a com-
bined theoretical and experimental analysis of indium
nanojunctions, taking advantage of the superconducting
phase transition of In at T = 3.41K. In the supercon-
ducting phase, multiple Andreev reflections give rise to
distinct subgap features in the I-V characteristics of the
nanocontact, from which all the transmission probabil-
ities of the conductance eigenchannels of the junction,
τi can be precisely determined [18–20]. The experimen-
tal insight to the statistical distribution of the individ-
ual channel transmission eigenvalues provides a unique
possibility for a strict confrontation of theoretical simu-
lations with reality, going far beyond the comparison of
measured and calculated single-atom conductances.

The details of the experimental and theoretical meth-
ods are available in the supplementary material [21].

Figure 1 demonstrates both experimentally-measured
and theoretically-simulated conductance traces and his-
tograms. Fig. 1(a) and (b) respectively show examples
of experimental conductance traces and the conductance
histogram constructed from 5000 individual traces. The
experimental histogram shows a sharp peak at G ≈
1.1G0 (G0 = 2e2/h), a smaller peak at G ≈ 1.7G0,
and two broader peaks at G ≈ 2.5G0 and 4G0, respec-
tively. These peak positions are reproducible for different
samples with some variation of the relative peak ampli-
tudes. The theoretical histogram in Fig. 1(d) is con-
structed from 100 independent simulated conductance
traces, from which examples are presented in Fig. 1(c).
The simulated histogram nicely reproduces the first peak
of the experimental histogram, and it also shows rec-
ognizable peaks at higher conductances around 2.5 and
4G0, close to the third and fourth experimental peak.
The second experimental peak may be reflected by a
shoulder around G ≈ 1.5 in the simulated histogram.
The simulated traces show clear conductance plateaus,
however, in contrast to the sharp experimental conduc-
tance jumps the calculated traces exhibit smoother tran-
sition between the plateaus. The conductance steps are
mainly governed by the delicate balance of elastic de-
formation and the change of surface energy. In our view
realistic elastic forces are accurately simulated, whereas a
proper simulation of surface energy is highly demanding
within classical MD simulations. Therefore, the simu-
lations are expected to be precise once a stable config-
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FIG. 1: (Color online) The top panels show demonstrative
experimental conductance traces (a) and the conductance his-
togram (b) for indium junctions. The counts are normalized
to the number of traces included. The bottom panels show ex-
amples of simulated conductance traces (c) and a theoretical
conductance histogram (d). Note, that in (a) and (c) the zero
point of the distance scale is arbitrarily chosen as the origin
of the horizontal axis. Below the panels some atomic config-
urations are demonstrated (e1-e4) respectively corresponding
to the positions on the simulated traces signed by stars.

uration is established, but the simulation of the jumps
between metastable configurations is less accurate. The
agreement with the measured conductance histogram in-
dicates that the simulations are able to provide a real-
istic ensemble of junction configurations, however, for a
stronger justification of this statement a more detailed
confrontation of the experimental and theoretical data is
necessary.
For a deeper comparison of the simulated data with

experimental junction configurations we perform a de-
tailed statistical analysis of the conductance channels’
transmission eigenvalues. Experimentally we have mea-
sured the current - voltage characteristics of more than
500 independent junctions in the superconducting state,
and by fitting the subgap structures we have determined
the transmission probabilities, τi for the open conduc-
tance channels of all these junctions [21]. The channel
transmissions are also determined along all points of the
simulated 100 traces by diagonalizing t†t, where t is the
transmission part of the scattering matrix.
Experimentally we have found that in spite of the

stochastic nature of contact rupture the evolution of the
average channel transmissions as a function of the total
conductance is material specific, and it is a well-defined
function for a given material. This evolution is demon-
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strated in Fig. 2 both for the measurements on In junc-
tions and for the simulations. A remarkable agreement
is found between theory and experiment, which gives a
strong justification that the simulations provide a re-
alistic ensemble of junction configurations. The com-
plete distribution of measured and calculated transmis-
sion eigenvalues are demonstrated in the supporting in-
formation [21].
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FIG. 2: (Color online) (a-d) The orange squares and blue cir-
cles respectively show the mean value of the experimental and
theoretical channel transmissions. The red/green lines respec-
tively show the channel transmissions during the stretching
of an ideal dimer/monomer configurations. The geometries
of these ideal configurations are demonstrated in the insets.
Panels (e) and (f) demonstrate the scattering wavefunction of
the first two eigenchannels in a junction with an ideal dimer
configuration (G = 1.18G0, τ1 = 0.985 ,τ2 = 0.102). The
first channel (e) shows a σ-type, whereas the second channel
(f) shows a π-type wavefunction at the central two atoms.

This agreement allows us to identify the typical atomic
configurations, which are responsible for the different
peaks in the experimental histogram. After a detailed
analysis of the atomic arrangements along the theoretical
conductance traces, we have found a clear matching be-
tween the four distinct conductance regions around the
peak positions (four color areas in Fig. 1(b) and (d))
with some typical contact configurations demonstrated
in Fig. 1(e1-e4). The region of the fourth peak (green
area) is typically related to configurations with 3 or 4
atoms in the smallest cross section (Fig. 1(e1)), which
we denote by N-3-N’ or N-4-N’ configuration (the mid-
dle number is the number of atoms in the smallest cross
section, whereas N and N’ are the number of neighbor
atoms on both sides which can have different values be-
ing larger than the middle number). The third peak (or-
ange area) basically corresponds to arrangements with 2

atoms in the smallest cross section (N-2-N’ configuration,
Fig. 1(e3)). The small peak at G ≈ 1.7G0 (blue area) is
mainly related to a monomer configuration with a single
atom in the smallest cross section (N-1-N’, Fig. 1(e2)).
The position of the first peak (red area) is clearly related
to a dimer configuration, where a chain of two atoms con-
nects the two electrodes (N-1-1-N’, Fig. 1(e4)). A movie
demonstrating the evolution of the contact configuration
along the simulated conductance traces is available in the
supplementary material [21].

Until now, most of the DFT-based calculations were
applied to small numbers of selected geometries and
therefore for comparison, we have performed simulations
on some ideal pyramid-like junctions, which are cleaved
from bulk indium crystal structure without any relax-
ation. The red lines in Fig. 2 demonstrate the opening
of the conductance channels as the distance between the
apex atoms of an ideal {001}-oriented dimer configura-
tion is varied (the ideal geometry is demonstrated in the
inset of Fig. 2(a)). At the optimized separation, the con-
ductance of the ideal dimer configuration is G ≈ 1G0

(red circle), in agreement with the simulated traces (e.g.
Fig. 1(e4)). The transmission probabilities of the first
two channels for this geometry show reasonable agree-
ment with the experiment, whereas the almost zero trans-
mission of the third channel is far below the experimental
data. As a second example, the green curve shows the
opening of the conductance channels for an ideal {001}-
oriented monomer configuration (see inset of Fig. 2(b)).
For this arrangement the conductance at the optimal sep-
aration is G ≈ 2.5G0 (green circle), which significantly
exceeds the conductance of monomer configurations ob-
tained by MD simulations, and furthermore the evolu-
tion of the channel transmissions strongly deviate from
the experimental mean values. These discrepancies are
attributed to the sensitivity to the number of neighbor
atoms, which is defined to be 2×4 for the ideal monomer,
whereas in the MD-based traces the middle atom usually
has only 2 or 3 neighbors on each contact. The above
comparisons demonstrate, that at G < 1.1G0 the junc-
tions are reasonably described by an ideal dimer con-
figuration, although the transmission probabilities show
deviations from the experiment presumably due to the
unrealistic symmetry of the ideal structure. However,
at higher conductances, where the precise geometry of
the junction strongly influences the conductance, ideal
configurations are giving false result, and besides the
simulations of ideal geometries are not able to describe
transitions between different configurations. In contrast,
MD simulations are able to sort out the statistically rel-
evant ensemble of configurations, and can provide excel-
lent agreement with the experimental data even on the
level of individual channel transmissions.

With theoretical simulations not only the transmission
probabilities, but also the scattering wavefunctions corre-
sponding to the different conductance channels can be de-
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termined. Fig. 1(e) and (f) show the absolute value of the
wavefunctions of the first two eigenchannels of an ideal
dimer configuration, associated with an incoming wave
from the left electrode. It is clear, that the first, highly
transmitting channel is related to a σ-type, whereas the
second channel with significantly smaller transmission
is related to a π-type wavefunction on the central two
atoms. This picture agrees with previous tight-binding
calculations, which have shown that in p-metals, the first
channel comes from the hybridization of s and pz orbitals,
whereas the second and third channels are related to px
and py orbitals [22].

-2 0 2

-3

0

3

-3

0

3

0.0 0.5 1.0

-3

0

3

a1

a3

 

 

V [mV]

a2

G=1.26G0

G=1.28G0

i={0.985,0.14,0.12, 0.01}

i={0.975, 0.15, 0.14, 0.01}

I [
m

V
*G

0]
I [

m
V

*G
0]

 

 

 

I [
m

V
*G

0]

i={0.93,  0.18, 0.16, 0}

G=1.27G0

a3a2

  

distance [Å]

a1

b

 

 

 

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 G
 [G

0 ]

 

distance [Å]

d1

d2 d3

c

d3d1 d2

FIG. 3: (Color online) An experimentally measured conduc-
tance plateau (b) and the I − V curves recorded at three dif-
ferent points of the plateau (a1-a3). The fitted channel trans-
missions are given in the insets of panels (a1-a3), and demon-
strated by red circles and blue/orange stars in panel (b). Panel
(c) demonstrates a theoretical conductance trace (black curve)
together with the evolution of the channels transmissions (red,
orange and blue curves). Panels (d1-d3) demonstrate the
junction geometries at the three points of the theoretical trace
marked by stars.

It is also interesting to follow the evolution of
the conductance channels along individual conductance
plateaus. Fig. 3(b) shows a rather flat conductance
plateau in the region of the first histogram peak. The
channel transmissions were measured at three points on
the conductance plateau (black circles). The total con-
ductance of these points is constant with an accuracy
of 1.5%. In contrast, during stretching the transmis-
sion of the first channel increases with more than 5% to-
wards unity (as demonstrated by the enhancement of the
zero bias supercurrent in the I-V curves, Fig. 3(a1-a3))
and the transmissions of the further channels decrease.
We have found this type of behavior (i.e. the opening
of the first channel as the junctions is stretched along
a straight plateau) rather typical in indium junctions,
which was frequently observed in theoretical simulations
as well (Fig. 3(c)). According to the simulations, this
behavior has a geometrical origin, the final stage of the
rupture is frequently associated with a dimer contact tilt-
ing towards the contact axis (Fig. 3(d1-d3)). During this
process the σ-type channel is found to have the largest

transmission at the final, most symmetric configuration
(dimer parallel with the axis), whereas the transmission
through the π-type channels is gradually suppressed. For
further illustration, the evolution of the wavefunctions
along this conductance trace is demonstrated by a video
in the supplementary material [21].

In conclusion, we have demonstrated a self-contained
method for the simulation of a statistical ensemble of
junction configurations and conductance histograms. To
obtain a proper compromise between speed and accu-
racy we have combined DFT-based calculations of the
conductance with classical MD simulations of the rup-
ture. The MD force fields were fitted to DFT calcu-
lations, which ensures the self-contained nature of the
method, and enables its application for a wide range of
materials – including multi-component systems – with-
out a detailed a priori knowledge of material properties.
The simulations were confronted with experiments on in-
dium nanojunctions. Experimentally not only conduc-
tance traces and conductance histograms were measured,
but a detailed insight to the distribution of individual
channel transmission eigenvalues was obtained by fitting
the subgap structures in the I − V curves of a statisti-
cal amount of superconducting junctions. The simula-
tions have shown remarkable agreement with experiment
even on the level of individual transmission eigenvalues,
demonstrating that the classical MD simulations are able
to produce a realistic ensemble of junction configurations.
However, if the contact rupture is not simulated by MD,
rather the conductance is calculated along the elongation
of some ideal contact configurations a strong deviation is
obtained from the experimental data. This comparison
demonstrates that ideal structures – which are frequently
adopted in simulations – are not realistic representations
of experimental junctions, and a statistical approach is
essential for an accurate identification of typical experi-
mental junction configurations.

The proposed statistical approach would also improve
the outcome of simulations on single-molecule junctions
and other molecular electronics devices, where stochas-
ticity is a major experimental difficulty. The forcefield
parametrization of multicomponent systems is not un-
common in MD calculations [23–27], and DFT level con-
ductance calculations are also routinely performed on
molecular junctions. Utilizing these experiences our com-
bined approach could indeed be generalized to systems
containing multiple atomic species.
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