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We present a new method using Dalitz plot and Bose symmetry of pions that allows the complete
determination of the magnitudes and phases of weak decay amplitudes. We apply the method to
process like B → K∗π, with the subsequent decay of K∗

→ Kπ. Our approach enables the additional
measurement of an isospin amplitude without any theoretical assumption. This advance will help in
measuring weak phase and probing for new physics beyond standard model with fewer assumptions.
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Hadronic weak decays are important in extracting CP
violating phases and probing the effects of physics be-
yond the standard model. Our inability to calculate all
hadronic effects accurately has made these tasks chal-
lenging. While significant progress has been made in
estimating hadronic effects, one still needs to use sym-
metry arguments, such as SU(3), to reduce the number
of hadronic parameters to be calculated. An alternative
helpful approach is to look for innovative methods that
enable obtaining more observables, thereby reducing the
dependence on theoretical assumptions. In this letter, we
present a new method based on Dalitz plot, isospin, and
Bose symmetry that enables the measurement of extra
observables and allows for a complete determination of
all the weak decay amplitudes and phases. We present
the method through the concrete example of B → K∗π
where the K∗ [15] decays into Kπ. We show how the
consequences of Bose symmetry between the two final
state pions enables one additional measurement–the di-
rect measurement of the the A3/2 amplitude, which is
crucial in determining the CP violating phase and looking
for new physics; our method is the only one not needing
any extra assumptions.

The large number of D and B mesons produced in
heavy flavor facilities has prompted a revival of Dalitz
plot analysis approach to study their decays [2–10]. It
is well known that identical bosons obey Bose symmetry
in the Dalitz plot distribution, and amplitudes must be
written in terms of isospin and spatial parts in such a
way that overall symmetry under permutation of iden-
tical particles is obeyed. Historically, this fact has been
noted in the Dalitz plot study involving three pion decay
of mesons [11].

The four decay modes B0 → K∗+π−, B+ → K∗0π+,
B0 → K∗0π0 and B+ → K∗+π0 can be described using
isospin in a fashion analogous to the decays B → Kπ.
The isospin I = 1

2 initial state decays to a final state
that can be decomposed into either I = 1

2 or I = 3
2 via a

Hamiltonian that allows ∆I = 0 or ∆I = 1 transitions.
The transition ∆I = 0 results only in a single amplitude
with final state I = 1

2 labeled as B1/2, whereas the tran-

sition with ∆I = 1 can results in two amplitudes with
I = 1

2 or I = 3
2 represented as A1/2 and A3/2 respec-

tively. The isospin amplitudes A1/2, A3/2 and B1/2 are
themselves defined [1] in terms of the Hamiltonian to be:

A1/2 = ±
√

2
3 〈

1

2
,±1

2
|H∆I=1|

1

2
,±1

2
〉 ,

A3/2 =
√

1
3 〈

3

2
,±1

2
|H∆I=1|

1

2
,±1

2
〉 ,

B1/2 =
√

2
3 〈

1

2
,±1

2
|H∆I=0|

1

2
,±1

2
〉 . (1)

The four decays are described in terms of three isospin
amplitudes A1/2, A3/2 and B1/2 as follows:

A−+=A(B0 → K∗+π−)=A3/2 +A1/2 −B1/2,

A+0=A(B+ → K∗0π+)=A3/2 +A1/2 +B1/2,

A00=
√
2A(B0 → K∗0π0)=2A3/2 −A1/2 +B1/2,

A0+=
√
2A(B+ → K∗+π0)=2A3/2 −A1/2 −B1/2.

(2)

These amplitudes satisfy the identity A00 + A−+ =
A+0 + A0+ and may be represented by a quadrilateral
in the complex plane shown in Fig. 1. Unfortunately,
much like the description of B → Kπ decays, the four
branching ratios are not enough to fix the three complex
isospin amplitudes and assumptions like SU(3) have been
used to understand these decays. We will show how Bose
symmetry can be used to obtain the isospin amplitudes
directly.
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FIG. 1: The four B → K∗π amplitudes related by isospin (see
Eq. (2)) . The quadrangle is fixed once A3/2 is known.
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The K∗π final state has the distinct advantage over
Kπ, as it allows for a model independent measurement
of all the isospin amplitudes. To understand better how
we achieve this consider for example the decay B+ →
K∗0π+, with K∗0 decaying to K0π0. We hence have the
final state K0π0π+. The two pions, π+π0 can either have
a net isospin Iππ = 1 or Iππ = 2. The key point we rely
on is that Bose symmetry demands that the isospin state
Iππ = 2 requires that the two pions are in spatially even
state. The state K0π0π+ with the pions being in the
even state cannot arise from final isospin 1/2 state, and
can only arise from final isospin 3/2 state. Thus isolat-
ing the state with two pions in the spatially even state
is equivalent to isolating the Iππ = 2 component, which
would provide a measurement of the isospin 3/2 ampli-
tude of K0π0π+ and hence the I = 3/2 component of
K∗π, since the strong decay K∗ → Kπ conserves isospin.
This provides an additional observable A3/2, thereby en-

abling the quadrangle depicted in Figure 1 to be com-

pletely fixed. The decays B → Kππ have been studied
earlier [3, 6, 8, 10], but the methods proposed there do
not permit determination of all the amplitudes without
additional assumptions and (or) modes being considered.

Once A3/2 is measured the quadrangle is completely
fixed. One has a total of ‘eleven’ observables: the four
decay rates for each B and B̄, A3/2 and its conjugate
mode equivalent Ā3/2 and the time dependent asym-

metry relating the angle between A(B → K∗0π0) and
A(B̄ → K̄∗π0). This provides just enough observables
to solve all the ‘six’ topological amplitudes [12] T , C, P ,
PEW , PC

EW and A and their ‘five’ relative phases purely
in terms of observables and the weak phase γ(φ3) which
can be measured elsewhere. This would provide valuable
information on hadronic parameters and enable clean test
of physics beyond the Standard Model. Alternatively,
one can measure the weak phase γ(φ3) [13] with fewer
assumptions about hadronic matrix elements, since we
have obtained two extra observables.

We now consider the decay B(P ) → K(p1)π(p2)π(p3)
in the Gottfried-Jackson frame with B moving in the ẑ
axis such that the two pions go back to back with π(p2)
at an angle θ with K(p1). In this frame ~p2 + ~p3 = ~0.
We define s ≡ (p2 + p3)

2 = (P − p1)
2, t ≡ (p3 + p1)

2 =
(P − p2)

2 and u ≡ (p1 + p2)
2 = (P − p3)

2. t and u can
be written as:

t ≡ a+ b cos θ , (3)

u ≡ a− b cos θ , (4)

where,
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2
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K , s) = (M4+m4

K+s2−2M2m2
K−2M2s−

2m2
Ks).
Let us now consider the three body final state Kππ.

Since the final state carries two pions which respect Bose
symmetry, the final state should have an overall symme-
try under isospin and space for the two pions, i.e. isospin
odd states must be odd under exchange of the two pions
and the isospin even states must be even under the ex-
change of the two pions. We now construct the isospin
states of |Kππ〉I . Note, we have placed a subscript ‘I’
to indicate this is just the isospin part of the state and
that the state |Kππ〉 will include the spatial dependence.
The isospin states are obtained as follows:
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where the subscript ‘e’ and ‘o’ mean that the two pions
in the state are in an ‘even’ and ‘odd’ state respectively.
We note that these subscripts are introduced only to take
note of the isospin symmetry of the two pions.
The complete state |K0π0π+〉 resulting from B decay

is then easily written as:
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Y cos θ, (8)

where X and Y cos θ are introduced to take care of the
spatial and kinematic contributions as is seen from the
discussion above (see Eqns. (3) and (4)). In general, X
and Y can be arbitrary even functions of cos θ. We retain
the subscripts e and o merely to track the even or odd
isospin state of the two pion in the three-body final state.
We define C1/2, C3/2 and D1/2 as the three-body

isospin amplitudes analogously to the two-body ampli-
tudes A1/2, A3/2 and B1/2 defined in Eq. (1). We further
add a superscript ‘e’ or ‘o’ for amplitudes arising from
even or odd isospin states respectively. The amplitudes
for the decays B+ → K0π0π+ is:
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3√
10
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2
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The other charged B decay amplitudes are:
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[
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X
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A(B+ → K0π+π0) =
3√
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The amplitudes for the neutral B decay modes can anal-
ogously be written. We emphasize again that the ampli-
tudes expressed in Eq. (9)–(12) are explicitly Bose sym-
metric. One may also note that while we have considered
B+ decays explicitly, the same analysis could equally well
have been done with B0 decays.
We now discuss an alternate approach, where we con-

sider the decay as a two step process. The decays
B → K∗π are described by the amplitudes given in
Eq. (2). The K∗0 resonance decays by strong interac-
tion into two modes: K0π0 and K+π−. Using isospin
the states |K∗0π+〉 and |K∗+π0〉 may hence be expressed
in terms of the three body finals states as,

|K∗0π+〉 =
√

1

3
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√

2

3
|[K+π−]π+〉, (13)
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√
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3
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2

3
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Here the square bracket denotes that the particles arise
from a K∗ resonance. The matrix element for the two
step decay B+ → [K0π0]π+ is then given by:

M(B+ → [K0π0]π+) =
gK∗Kπ√

3
(A3/2 +A1/2 +B1/2)

× (P + p3)
µ(p1 − p2)

ν

(

− gµν +
(p1+p2)µ(p1+p2)ν

m2

K∗

)

u−m2
K∗ + imK∗ΓK∗

where gK∗Kπ takes care of the couplings and other propor-
tionality terms in the expression for the amplitude. The
term (P + p3).(p1 − p2) is easily to be t− s. Hence,

M(B+ → [K0π0]π+) =
gK∗Kπ√

3
(A3/2 +A1/2 +B1/2)

×
(

s− t+ c

u−m2
K∗ + imK∗ΓK∗

)

. (15)

The amplitude corresponds to a K∗0 resonance at u =
mK∗ on the Dalitz plot. Note that the amplitude can be
separated into two parts – the isospin amplitude and the
spatial part of the amplitude given by the large round
bracket. Finally, the constant c is given by

c =
(M2 −m2

π)(m
2
K −m2

π)

m2
K∗

. (16)

Similarly with an intermediate K∗+ resonance one ob-
tains,

M(B+ → [K0π+]π0) =
gK∗Kπ√

3
(2A3/2 −A1/2 −B1/2)

×
(

s− u+ c

t−m2
K∗ + imK∗ΓK∗

)

, (17)

as the amplitude corresponding to the resonance K∗+

resonance at t = mK∗ .

Clearly Eqns. (15) and (17) taken separately are not
of the form depicted in Eqns. (9) and (12) and do not
respect overall Bose symmetry as is required. The two
body even and odd isospin amplitudes for the mode
B+ → K∗0(+)π+(0) are given by the sum and difference
of the amplitudes for B+ → K∗0π+ and B+ → K∗+π0,
and are defined to be Ae and Ao respectively [16]. We
then have,

Ae =
gK∗Kπ√

3

3

2
A3/2, (18)

Ao =
gK∗Kπ√

3

1

2
(−A3/2 + 2A1/2 + 2B1/2) (19)

The sum of the matrix element of the two contributing
modes is Bose symmetric and may be written in an ex-
plicitly symmetric form as:

M(B+ → [Kπ]π) =

[

Ae

( s− t+ c

u−m2
K∗ + imK∗ΓK∗

+
s− u+ c

t−m2
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)

+Ao
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− s− u+ c
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)

]

. (20)

We note that using Eqns. (18) and (19) we recover the sum of Eqns. (15) and (17). It now follows that:

|M(B+ → [Kπ]π)|2 =
f1|Ae|2 + f2Re(AeA

∗

o) + f3Im(AeA
∗

o) + f4|Ao|2
(

(m2
K∗ − t)

2
+m2
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K∗

)(

(m2
K∗ − u)

2
+m2

K∗Γ2
K∗
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where the denominator can be expanded as

(

(m2
K∗−t)2+m2

K∗Γ2
K∗

)(

(m2
K∗−u)2+m2

K∗Γ2
K∗

)

=
(

(a−m2
K∗)2+m2

K∗Γ2
K∗

)2−2b2 cos2 θ((a−m2
K∗)2−m2

K∗Γ2
K∗

)

+b4 cos4 θ,

and after some simplification we find,

f1 = 4 (−3a+ c+Q)2
(

(a−m2
K∗)2 +m2

K∗Γ2
K∗

)

+ 8b2(a−m2
K∗)(3a− c−Q) cos2 θ + 4b4 cos4 θ (22)

f2 = 8b
(

(3a− c−Q)
(

m2
K∗Γ2

K∗ + (m2
K∗ − a)(−4a+ c+m2

K∗ +Q)
)

− b2(−4a+ c+m2
K∗ +Q) cos2 θ

)

cos θ (23)

f3 = 8 bmK∗ΓK∗

(

− (3a− c−Q)2 + b2 cos2 θ
)

cos θ (24)

f4 = b2 cos2 θ
(

(−4a+ c+m2
K∗ +Q)2 +m2

K∗Γ2
K∗

)

, (25)

where Q = M2 +m2
K + 2m2

π. It is obvious that the even
part of |M(B+ → [Kπ]π)|2 can be obtained by adding
to itself the same term with t and u interchanged. This
can be carried out in the Dalitz plot by reflecting the
data around t = u line and adding it. By fitting this to a
polynomial in cos2 θ, it is straightforward to extract |Ae|
and thus |A3/2| using Eq. (18).
We have been able to extract the even and odd parts

by symmetrization, achieved by adding the amplitudes
of the contribution from two resonances on the Dalitz
plot that are related by the exchange of two pions. The
reader may wonder how the even and odd parts for the
mode B+ → [K+π−]π+ could be separated, since there
exists no resonance if π+ and π− are exchanged. Note
that on the K∗ resonance the two-body amplitudes A1/2,
A3/2 and B1/2 are related to the three-body amplitudes
Ce,o

1/2, C
e,o
3/2 and De,o

1/2. Comparing Eqns. (18) and (19)

with Eqns. (9) or (12) and since B → [K+π0]π0 is purely
even we derive:

Ce
3/2 =

√

5

6
A3/2, Ce

1/2 = −A1/2√
3
, De

1/2 = −B1/2√
3
,

Co
3/2 =

A3/2√
6
, Co

1/2 = −
√

2

3
A1/2, Do

3/2 = −
√

2

3
B1/2.

Using these relations in Eq. (10) which is already sym-
metric we find that the even and odd parts of the isospin
contribution to B+ → [K+π−]π+ are equal, and thus
even the one surviving pole satisfies Bose symmetry.
To summarize, we have shown how Dalitz plot, isospin,

and Bose symmetry can be used to obtain extra observ-
ables without any theoretical assumptions. We demon-
strate the usefulness of this observation by developing
the method to determine completely all the weak decay
amplitudes for B → K∗π. Our new approach would pro-
vide valuable information on hadronic parameters, enable
clean test of physics beyond the Standard Model and also
help in measuring the weak phase γ(φ3) all with fewer as-
sumptions about hadronic matrix elements. The method
has several further applications in three body decays of
D and B mesons [14].
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