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A stability correction function φm(ζ) that accounts for distortions to the logarithmic mean velocity
profile (MVP) in the lower atmosphere caused by thermal stratification was proposed by Monin and
Obukhov in the 1950s using dimensional analysis. Its universal character was established from many
field experiments. However, theories that describe the canonical shape of φm(ζ) are still lacking.
A previous link between the spectrum of turbulence and the MVP is expanded here to include
the effects of thermal stratification on the turbulent kinetic energy dissipation rate and eddy-size
anisotropy. The resulting theory provides a novel explanation for the power-law exponents and
coefficients already reported for φm(ζ) from numerous field experiments.

Most human activity and biological processes occur
within the lower atmosphere, a thermally stratified re-
gion characterized by shear and buoyancy-driven turbu-
lence. Thermal stratification arises because of diurnal
heating and cooling resulting in finite sensible heat flux
(Hs) at the earth’s surface, while turbulence is mechani-
cally produced due to the reduced mean velocity near the
ground. The co-existence of shear- and buoyancy- gen-
erated turbulence leads to many difficulties in describing
the flow properties in the lower atmosphere. Even for
a stationary, horizontally homogeneous, high Reynolds
number flow above an infinite flat and heated (or cooled)
surface, the description of elementary flow statistics such
as the mean velocity profile (MVP) has resisted complete
theoretical treatment. There are inklings of a possible
universal behavior in the MVP across a wide range of
thermal stratification conditions as demonstrated by the
collapse of data from multiple field experiments using di-
mensional analysis, known as Monin-Obukhov Similarity
Theory [1, 2]. Indeed, this dimensional analysis proved so
successful that it led some [3] to state that “with proper

non-dimensionalization, all flow statistics in the surface

layer can be reduced to a set of universal curves”.
Monin-Obukhov Similarity Theory [1, 2] argues that a

non-dimensional MVP is given as

du

dz

κνz

u∗

= φm(ζ), (1)

where u is the horizontal mean velocity, over-bar is
Reynolds averaging, u∗ =

√

τo/ρ is the friction veloc-
ity, τo is the ground shear stress, ρ is the mean air den-
sity, κν is the von Karman constant, z is the height from
the ground surface, ζ = z/L is the atmospheric stabil-
ity parameter, and L is the Obukhov length given as [4]

L = −u3
∗
/κν/

(

g
Tv

Hs

ρCp

)

, where g is the gravitational ac-

celeration, T is the mean virtual potential temperature,
and Cp is the specific heat capacity of dry air at constant
pressure. The φm(ζ) is a dimensionless stability correc-
tion function that cannot generally be inferred from di-
mensional considerations alone and must be determined

from empirical data.
The so-called Businger-Dyer (BD) stability correction

function has proved successful in fitting numerous field
experiments reporting φm(ζ), including the results of the
classic Kansas experiments [5] shown in Figure 1. These
φm(ζ) functions are used in virtually all climate, atmo-
spheric, hydrologic, and ecological applications or models
of land-surface processes when land surface fluxes are to
be coupled to the state of the atmosphere [6, 7]. The BD
φm(ζ) is expressed as [8] φm(ζ) = (1 − 16ζ)−1/4 when
ζ < 0 (hereafter referred to as unstable conditions charac-
terized byHs > 0 during daytime) and φm(ζ) = (1+4.7ζ)
when ζ > 0 (hereafter referred to as stable conditions
characterized byHs < 0 as may occur during night-time).
For non-thermally stratified yet sheared (u∗ > 0) flows
(e.g., neutral conditions, Hs = 0, L → ∞, and therefore
ζ = 0),φm(0) = 1, thereby recovering the well-known
‘log-law of the wall’ [2] du/dz = u∗/(κνz). A major cri-
tique of the BD φm(ζ) is their failure to recover the well-
known free convection limit [9] given as φm(ζ) ∼ ζ−1/3 so
as to cancel out any u∗ dependence in the MVP when −ζ
is very large [10]. This critique was partially addressed
by the so-called KEYPS or the O’KEYPS equation (after
Obukhov, Kazansky, Ellison, Yamamoto, Panofsky, and
Sellers) given by [11–13]

[φm(ζ)]
4
− γζ [φm(ζ)]

3
= 1, (2)

whose analytical solution for φm(ζ) > 0 is given in the
supplementary material. The γ is an empirical constant
that must be inferred from data. First proposed by
Obukhov [4, 14], the O’KEYPS equation was intended to
be an interpolation function that recovers the BD scaling
for mildly unstable conditions (for small −ζ) while ensur-
ing that φm(ζ) ∼ (−ζ)−1/3 for very large−ζ. Theoretical
justification for the O’KEYPS equation remained heuris-
tic and assumed a constant heat to momentum eddy-
diffusivity (see supplementary material), an assumption
negated by the Kansas experiment thereby preventing
wide-spread acceptance of the O’KEYPS equation. The
aim here is to provide a theoretical framework to predict
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FIG. 1. The determination of φm(ζ) from the Kansas exper-
iment. Note the quasi-linear increase for stable atmospheric
conditions (ζ > 0) and the -1/4 power-law dependence for un-
stable conditions (ζ < 0). The so-called Businger-Dyer (BD)
stability correction functions are shown as lines. The φm(ζ)

is expected to scale as (−ζ)−1/3 as the free convection limit
is approached, often coinciding with −ζ > 5 (not shown here)
as discussed elsewhere [10].

FIG. 2. Derivation of the turbulent shear stress for an
isotropic eddy of size 2s as in [18]. The characteristic eddy
here transfers momentum down at a rate ρu(z + s)υ(s) and
up at a rate ρu(z − s)υ(s), where variations in ρ(z) were ne-
glected relative to variations in u(z) in the momentum trans-
fer. The most efficient eddy size that transports momentum
to the ground is an eddy of size 2s = z. A departure from the
[18] approach is the addition of the ground heating or cooling
(Hs).

the shape of φm(ζ), which has thus far remained elusive,
lagging behind experiments [3, 10, 15, 16] and numerical
simulations [17].
For a stationary, planar homogeneous, high Reynolds

flow with negligible subsidence and mean horizontal pres-
sure gradient, the mean longitudinal momentum balance
reduces to ∂τt(z)/∂z = 0, where τt is the turbulent stress
at height z assumed to represent the total stress at the
ground, τo, resulting in τt = τo = ρu2

∗
. In the absence

of any thermal stratification (|L| → ∞), a theoretical
linkage between the MVP and the spectrum of turbu-
lence has recently been proposed [18]. Such a framework
serves as a starting point in the analysis of heated or
cooled boundaries. The momentum flux exchanged by
the most effective momentum transporting eddy at level
z is given by [18] (Figure 2)

u2
∗
= κτυ(s) [u(s+ z)− u(s− z)] ≈ κτυ(s)

[

du(z)

dz
2s

]

,

(3)
where u(s + z) − u(s − z) is the net momentum per
unit mass exchanged at height z due to eddies of size
2s, υ(s) = |w(x + 2s) − w(x)| is the turnover velocity
characterized by the magnitude of the velocity difference
assuming the eddy in Figure 2 is isotropic, and κτ is a
proportionality constant. The eddy size that contributes
most efficiently to τo is an eddy ‘touching’ the ground
surface resulting in s = z and simplifying equation 3 to

2
κτ

κν

υ(z)

u∗

[

du(z)

dz

κνz

u∗

]

= 2
κτ

κν

υ(z)

u∗

[φm] = 1. (4)

An estimate of υ(z), the turnover velocity, is necessary
to describe φm. This estimate may be provided from Kol-
mogorov’s 4/5 law for the third-order velocity structure

function [19, 20], according to which υ(z) = [κǫǫz]
1/3,

where κǫ = 4/5, and ǫ is the mean turbulent kinetic en-

ergy (TKE) dissipation rate. This estimate of υ(z) is ex-
act for locally homogeneous and isotropic turbulence [20]
and can be used in equation (4) provided ǫ is known. To
determine ǫ, the TKE budget subject to the same ideal-
ized flow conditions as the mean longitudinal momentum
balance reduces to [21]

ǫ = u2
∗

∂u

∂z
+

g

Tv

Hs

ρCp
+

(

−
1

2

∂w′e′2

∂z
−

1

ρ

∂w′p′

∂z

)

, (5)

where e is the TKE, p′ is the turbulent pressure, and
w′ is the turbulent vertical velocity. The first and sec-
ond terms on the right-hand side of equation (5) are
the mechanical production and the buoyant production
or dissipation depending on the sign of Hs. The w′e2

and w′p′ are the turbulent transport and pressure re-
distribution of TKE, and these terms do not ‘globally’
contribute to any generation or destruction of TKE
within the entire atmospheric boundary layer because
∫ h

0

(

− 1
2
∂w′e2

∂z − 1
ρ
∂w′p′

∂z

)

dz = 0 , where h is the atmo-

spheric boundary layer height. Upon neglecting any con-
tributions arising from the turbulent TKE transport and
pressure redistribution terms locally at height z , equa-
tion (4) becomes

2κτκ
1/3
ǫ

κ
4/3
ν

[φm]

[

κνz

u3
∗

(

u2
∗

∂u

∂z
+

g

Tv

Hs

ρCp

)]1/3

= 1. (6)

Using the definition of L, equation (6) can be expressed
as

β1 [φm(ζ)]
4

[

1−
ζ

φm(ζ)

]

= 1, β1 =
23κ3

τκǫ

κ4
ν

. (7)

Imposing φm(0) = 1 results in β1 = 1 and κτ =
(1/2)(κ4

ν/κǫ)
1/3 ≈ 0.21. This linkage between the con-

stant κτ , the Von Karman constant κν , and the Kol-
mogorov’s 4/5 law (via κǫ) is an outcome of attached ed-
dies of size z being within the inertial subrange, a range
bounded above by the integral length scale of the flow
(IL) and below by the Kolmogorov viscous dissipation
length scale (η = ν3/4ǫ−1/4, where ν is the kinematic
viscosity). When Hs > 0, equation (7) recovers all the
scaling exponents observed in φm(ζ) for small and large
ζ. For small values of −ζ, the -1/4 power-law (shown in
Figure 1 for unstable conditions) is recovered by noting
that the term [ζ/φm(ζ)] ≈ ζ so that

[φm(η)]4 [1− ζ] ≈ 1;⇒ φm(ζ) ≈ (1− ζ)−1/4. (8)

For large −ζ, the -1/3 power-law for convective scaling
[9, 16] (not shown in Figure 1) is recovered by noting that
the term [−ζ/φm(ζ)] ≫ 1 so that

[φm(ζ)]
4
[−ζ/φm(ζ)] ≈ 1;⇒ φm(ζ) ≈ (−ζ)−1/3. (9)

For stable atmospheric conditions and large ζ, ζ/φm < 1
to maintain φm > 0, and hence φm must increase pro-
portionately with increasing ζ.
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Equation (7) becomes identical to the O’KEYPS equa-
tion when γ = 1. However, the derivation leading to
equation (7) makes no assumptions about similarity be-
tween heat and momentum transfer and does not employ
heuristic gradient-diffusion closure arguments regarding
the vertical velocity variance, unlike previous derivations
of the O’KEYPS equation [13, 22, 23]. Our analysis
leading to equation (7) demonstrates that the canonical
form of the O’KEYPS equation (to within a constant γ)
emerges naturally within the atmospheric surface layer
when eddies of size z are most efficiently exchanging mo-
mentum with the ground and are ‘embedded’ within the
inertial subrange (i.e. η ≪ z ≪ Il).

When fitted to a number of data sets, the parameter γ
in the O’KEYPS equation is larger than unity. Reported
values range from 5 to 18, with γ = 9 proposed by a num-
ber of authors [12, 13]. The derivation here identifies two
possible reasons why γ is larger than unity and may not
be entirely universal: (1) contributions from the turbu-
lent flux transport and pressure re-distribution terms in
the TKE budget, and (2) anisotropy of the attached eddy
to the ground surface along with concomitant departure

from the Kolmogorov scaling, υ(z) = [κǫǫz]
1/3

. In the
first case, it is known that the sum of the flux-transport
and pressure redistribution terms both increase in mag-
nitude (but oppositely in sign) with increasing Hs for
unstable conditions. Equation (7) may be expanded to
account for this increase via a coefficient β2 so that

ǫ = u2
∗

∂u

∂z
+

g

Tv

Hs

ρCp
(1+β2);β2 =

(

− 1
2
∂w′e2

∂z − 1
ρ∂w

′p′∂z
)

g
Tv

Hs

ρCp

.

(10)
For the simplest case of a constant β2, it can be shown
that the O’KEYPS equation is recovered if γ = 1 + β2.
However, inclusion of the transport and redistribution
terms to the TKE budget in isolation is not sufficient
to provide values as large as γ = 9 (or the factor 16 in
BD). In fact, despite large uncertainties in the magnitude
of the pressure redistribution term, the values of β2 from
the Kansas experiments are never much larger than unity
[24].

For the non-isotropic eddy scenario, the vertical di-
mension of the eddy that contributes most efficiently to
momentum exchange remains of size s = z. However,
the longitudinal dimension of the eddy is no longer z. To
account for such large-scale anisotropy in the calculation
of υ(s′), it may be assumed that s′ = zf(ζ) , where f(ζ)
is a dimensionless anisotropy function such that f(0) = 1
to recover the log-law. The derivation proceeds as before,

with υ(s′) = [κǫǫzf(ζ)]
1/3

and equation (3) becoming

2κτκ
1/3
ǫ

κ
4/3
ν

[φm]

[

κνzf(ζ)

u3
∗

(

u2
∗

∂u

∂z
+

g

Tv

Hs

ρCp
(1 + β2)

)]1/3

= 1.

(11)

FIG. 3. Left: Estimation of the anisotropy function f(ζ) from
the measured wavelength corresponding to the vertical veloc-
ity spectral peaks in the Kansas experiment. The dashed ver-
tical line indicates the value of ζ where the λw(ζ)/λw(0) be-
comes quasi-constant according to the Kansas data. The dot-
ted vertical lines indicate the near-neutral regime (| − z/L| <
0.1) Right: Comparison between measured (circles) and mod-
eled (solid line) φm(ζ) with βe = 1 and the f(ζ) shown
in the left panel. The classical Businger-Dyer φm(ζ)(dotted
line,BD) and predictions from the O’KEYPS equation with
γ = 9 (dashed line) are also shown for reference.

Hence, the revised equation (6) is now given by

[φm]
4

[(

1− (1 + β2)
ζ

φm

)]

=
1

f(ζ)
. (12)

An estimate of f(ζ) can be determined from the ra-
tio of wavelength (λw(ζ)) corresponding to the verti-
cal velocity spectral peaks relative to their near-neutral
(λw(0)) counterpart [15]. From the Kansas experiments,
f(ζ) = λw(ζ)/λw(0) resulting in

f(ζ) =
z(0.55− 0.38|ζ|)−1

z(0.55− 0)−1
=

(

1−
0.38

0.55
|ζ|

)

−1

,−ζ < 1;

(13)

f(ζ) = 3.23, 1 < −ζ < 0.1h/L. (14)

For moderately stable conditions, it is difficult to de-
termine f(ζ) given the dependence of this wavelength
on absolute L and possible independence from z. How-
ever, for ζ > 1.5, f(ζ) can be smaller than 0.1. It
is instructive to explore how well f(ζ) 6= 1 connected
only to anisotropy in eddy sizes recovers the data in
Figure 1. An interpolation formula to equation (14),

given as f(ζ) =
(

1− 0.38
0.55 [1− exp(15ζ)]

)

−1
was used for

zeta < 0. This formula guarantees that f(0) = 1, recov-
ers a near-constant f(ζ) for −ζ < 1 , and ensures that
this constant limit is approached smoothly at −ζ = 1
(Fig. 3). For stable conditions (ζ > 0), it is assumed
that f(ζ) =

(

1 + 1
0.55ζ

)a
, where the bracketed quantity

is inferred from vertical velocity spectral peaks for very
mildly stable conditions, and a ≈ −6 is needed to en-
sure an approximately smooth df(ζ)/dζ for small ζ as
the flow transitions from stable to unstable conditions.
Using these anisotropy functions and assuming a β2 = 1,
predictions based on equation (12) are compared against
the data from the Kansas experiment (Fig. 1) as well
as the O’KEYPS equation with γ = 9, as shown in Fig.
3. It appears that this plausible combination of β2 and
f(ζ) does offer a novel explanation for the variations in
measured φm(ζ) with ζ.
The long-surmised link between the stability correc-

tion functions for momentum, the Kolmogorov spectrum,
and the turbulent kinetic energy budget was established
across a wide range of atmospheric stability regimes. The
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canonical form of the O’KEYPS equation arises from this
link when the momentum transporting eddies attached
to the ground remain embedded within the inertial sub-
range. The novelty of the derivation is that no assump-
tions are made about equality between heat and momen-
tum transfer or about heuristic gradient-diffusion model-
ing of the vertical velocity variance. Moreover, the pro-
posed derivation suggests that the empirical parameter γ
of the O’KEYPS equation (or the factor of 16 in the BD
equations) is partly linked to contributions arising from
the turbulent transport and pressure redistribution terms
in the turbulent kinetic energy budget (via β2). The γ
primarily encodes all the information about changes in
the spectrum of turbulence in general and the anisotropy
in the momentum transporting eddies in particular as at-
mospheric stability regimes are altered. The anisotropy
argument presented only modifies the longitudinal ge-
ometry shown in Figure 2 with progressive changes in
Hs. This argument can be completed by noting that not
only the most energetic length, but the entire spectrum
of the vertical velocity scale is modified by ζ. More for-
mally, this modification leads to a revised estimate of
υ(s)2 =

∫

∞

1/s Ew(κ)dκ, where Ew(κ) is the energy spec-

trum of the vertical velocity at wavenumber κ [18]. With
such a representation, υ(s) = (κǫǫs)

1/3
√

Iw(ζ), where
Iw(ζ) is a correction to the Kolmogorov scaling primar-
ily due to the fact that the low-frequency component of
Ew(κ) is modified by ζ. This correction may be small
for unstable conditions given the extensive spread of the
inertial subrange in the velocity spectra [15]. For very
stable flows, f(ζ) goes to zero very fast (as shown in
Figure 3), and therefore the effect of the anisotropy in
equation (12) becomes very large. Accounting for the ef-
fect of the eddy-size anisotropy on the full spectrum of
the vertical velocity may reduce this rate of growth, as
changes in the dissipative regime of the spectrum act as
a low-pass filter. Note that in field experiments, Iw(ζ)
may be ‘contaminated’ by unsteadiness originating from
the outer layer due to meso-scale motion (i.e. a violation
of the assumption of stationary flow) and may lead to
non-universal φm(ζ).
There are two ‘end-member’ limits not considered here:

The pure convection and the very stable atmospheric lim-
its. As to the former, the framework adopted in Figure
2 no longer applies as finite shear is necessary for such
analysis (τo > 0). It was shown in some field experiments
[10] that as u∗ → 0 (no shearing) and when Hs remains
high, φm(ζ) seems to exhibit some increase with increas-
ing −ζ/5 that is not reproduced here. With regards to
the very stable stratification, the flow may not be entirely
turbulent, and unsteadiness can emerge due to multiple
exogenous phenomena [25] not considered here such as
passage of clouds. An appreciation as to why φm(ζ) for
such a stably stratified flow condition remains so difficult
to predict theoretically is discussed next. We have shown
that for −5 < ζ < 2, a close relationship between φm(ζ)

and γ characterizing the MVP and the properties of the
turbulent energy spectrum (especially the Kolmogorov
inertial subrange scaling) was established. This indicates
that atmospheric surface layer flows resemble continu-
ous phase transitions (or transitions of the 2nd order) in
which the global state (i.e. MVP) is impacted by the
statistics of the fluctuations (i.e the power-law spectrum
of the turbulent velocity fluctuations). The collapse of
the data and the near-universal character of φm(ζ) across
a wide range of u∗ and Hs boundary conditions (analo-
gous to external fields) suggests an analogy to the so-
called ‘Widom scaling’ near critical points reviewed by
Goldenfeld [26] via the reduced variable ζ. This type of
transition differs from the classical (or first-order) transi-
tion to turbulence in which a laminar flow is subjected to
an instability whose amplitude scales with the Reynolds
number. However, for stable atmospheric flows in which
thermal stratification entirely dampens the mechanical
production of turbulence [25] in equation (10), both types
of critical transitions co-exist within a typical Reynolds
averaging period. If so, this co-existence may explain
why a complete theory for moderately to very stable at-
mospheric flows is currently beyond reach [27].
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