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Local anisotropy in globally isotropic granular packings
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We report on two dimensional computer simulations of frictionless granular packings at various
area fractions, φ, above the jamming point φc. We measure the anisotropy in coarse-grained stress,
εs, and shear modulus, εm, as functions of coarse-graining scale, R. εs can be collapsed onto a master
curve after rescaling R by a characteristic lengthscale, ξ, and εs by an anisotropy magnitude, A.
Both A and ξ accelerate as φ → φc from above, consistent with a divergence at φc. εm shows no
characteristic lengthscale and has a non-trivial power-law form, εm ∼ R−0.62, over almost the entire
range of R at all φ. These results suggest that the force chains present in the spatial structure of
the quenched stress may be governed by different physics than the anomalous elastic response near
jamming.

It has been known for many years that compressive
loads in granular materials are transmitted along so-
called force chains. The chains are observed in both ex-
periments [1] and computer simulations [2]. Despite their
obvious visual appearance (c.f. figure 1 below), quanti-
tative characterizations of them have only recently been
reported. These recent approaches have focused on topo-
logical characterizations [3], 2-point correlations in the
local hydrostatic pressure [4], and statistics of spatially
averaged forces [5]. These works showed that there are
some characteristics in the spatial structure of the stress
field which are independent of density, but they left open
the important question of whether one can define a char-
acteristic lengthscale associated with the general visual
impression one gets when observing the contact force net-
work.

At the same time, there has been a large amount of
work on the linear elastic response of these granular ma-
terials and other amorphous solids. For Lennard-Jones
glasses, Tanguy and co-workers [6–9] showed that the dis-
order can give rise to important corrections to naive esti-
mates for the elastic moduli. O’Hern et. al. [10] showed
that in granular packings, these corrections give rise to
anomalous scaling of the shear modulus with φ at the
jamming point, φc, the particle fraction at which the con-
fining pressure vanishes. These scalings were explained
by Wyart and co-workers in terms of an emergent length-
scale, ξ, which was argued to diverge at φc [11]. Ellen-
broek and co-workers also related this anomalous elastic-
ity to an increasingly inhomogeneous particle-scale linear
response to globally homogeneous deformation [12].

Our motivation here is two-fold. Firstly, we seek a
simple quantitative measure of the characteristic length
associated with the force chains. We base our approach
on the observation that the stress fields in granular mate-
rials are highly anisotropic at small lengthscales even in
isotropically prepared samples in a globally hydrostatic
stress state. We then quantify the lengthscale associated
with the force chains in terms of this scale-dependent
stress anisotropy. Secondly, Tsamados and co-workers [9]
recently found a novel scale-dependent anisotropy in the

shear modulus of a Lennard-Jones glass. The anisotropy
in the shear modulus has never been studied in granu-
lar packings. One might expect it to be related to the
anisotropy in the stress. We show here that while the
anisotropy in stress shows a characteristic lengthscale
that grows as φ→ φc from above, the anisotropy in shear
modulus has a non-trivial power-law form, εm ∼ R−0.62,
with very little dependence on φ.

Model and protocol: We perform computer simu-
lations of frictionless granular packings in two dimen-
sions (2D). We use a well studied binary mixture [10]:
NA/NB = 1, DA/DB = 1.4, where N is the number of
particles of a given species and D is the diameter of the
species. The particles interact via a pairwise, repulsive,
central potential. U = ε

2s
2 for s > 0 and zero otherwise

where s is the dimensionless overlap between the parti-

cles, s =
(Di+Dj)−2rij

Di+Dj
, where rij is the distance between

the particles.. We report all results in units of ε and DB .

The packings were prepared via a quench from a ran-
dom initial state at fixed φ. We used the molecular dy-
namics routines as implemented in the LAMMPS soft-
ware package [13] with a constant viscous drag. The
damping time for the viscous term, τd = 2.0τv, where the
vibrational timescale, τv =

√
ε/(mD2), where m is the

particle mass. The quench was run until the maximum
net force on any particle was no more than 10−6 times
the average contact force. The timestep for the quench
was ∆t = 0.2τv, and we checked that our results were
insensitive to the precise value. We also checked that en-
ergy minimization and damping of relative velocity both
give similar results to the simple viscous drag. [24]

Stress Anisotropy: As usual, for a system of particles
with pair-wise central forces, we define the static virial for
the i-th particle via the Irving-Kirkwood expression [14],
σiµν =

∑
j fijrij r̂ijµr̂ijν . Here, fij is the magnitude of

the repulsive force between particles i and j, and r̂ijµ is
the unit vector pointing from i to j where µ is the carte-
sian index. We define p as half the sum and τ as half
the difference between the two eigenvalues of σµν . Intu-
itively, if a given region contains a single dominant force
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FIG. 1: A small window (60D × 60D) in a typical system of
length 320D at φ = 0.86 (top) and φ = 0.89 (bottom). Filled
discs correspond to particles with hydrostatic virial, p, in the
top 10% (left), 20% (center), and 40% (right).

chain, the direction of the eigenvector of σµν with larger
eigenvalue should point along it, while a region contain-
ing multiple force chains oriented along various directions
or no force chain at all should have a hydrostatic stress
with τ ∼ 0. We let εs

.
= τ/p characterize the degree of

anisotropy in the stress tensor.

In figure 1, we fill only particles whose p is in the top
10% (left), 20% (center), and 40% (right) of all particles
for a typical configuration at φ = 0.86 and φ = 0.89. [25]
Chain-like clusters are clearly present. On the length-
scales associated with these chains, the stress tensor can
deviate dramatically from an isotropic state, while it
must become more and more isotropic for stresses which
are averaged over larger and larger lengths. For a given
threshold, the clusters tend to be more extended and
chain-like at φ = 0.86 but more compact at φ = 0.89.
One would expect this to be reflected in a much more
anisotropic stress field for the φ = 0.86 system, and we
will see below that this is indeed the case.

To define a coarse-grained σµν , we simply divide the
simulation cell into squares of length R and sum the
particle-wise virials in each square. For a given region, p
is simply the average of the p values of its subregions,
while τ is not. So the average p for a given system
does not depend on the coarse-graining scale at which
we defined the stress tensors, while the average τ does.
For each coarse graining scale, R, we average εs over all
squares to obtain εs.

In figure 2 (Top), we plot εsR vs R for various φ. εs
is scaled by R−1 since the central limit theorem would
indicate that εs ∼ R−1 ∼ 1/

√
N for a system with

no spatial correlations. In the inset, we present ”fake”
data obtained by spatially randomizing the particle-scale
virial tensor before averaging to demonstrate the ex-
pected 1/

√
N scaling explicitly. The systems closer to

jamming are somewhat more anisotropic even in the
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FIG. 2: (Top) Stress anisotropy, εs scaled by R−1 vs. coarse
graining size, R, for various φ. Inset: same as main plot with
εs obtained from spatially randomized particle-scale virials
drawn from the true virial distribution. (Bottom) Same as
(Top) but with εs scaled by A and R scaled by ξ for each φ
Inset: scaling parameters, ξ and A, normalized to their value
for the φ = 0.85 system.

”fake” system. In the ”real” system, the primary trend in
the data is to follow the R−1 trend expected from count-
ing statistics, however, the departures from R−1 show a
pronounced φ dependence. For all φ, there is a relatively
sharp crossover from a small R regime where the behav-
ior nearly follows the naive R−1 scaling predicted from
counting arguments to a large R regime where εs decays
much more slowly than the counting argument would in-
dicate. The length at which the crossover occurs is in
rough agreement with the visual impression of the chains
observed in figure 1, with the systems closer to φc cross-
ing over at larger R. In figure 2(Bottom), we show that
the data can be made to collapse for various φ when plot-
ting Rεs/A vs. R/ξ. Here ξ and A are scale parameters
which are chosen by hand to obtain a good collapse. In
the inset, we plot ξ and A, normalized to their values
at φ = 0.85. Both the curves become increasingly steep
as φ decreases, consistent with a divergence at φc. We
note that we obtain similar values for the scaling param-
eters in systems which are larger than the 320× 320 one
shown here emphasizing that system size plays no role in
the cross-over behavior for the range of φ studied.

Modulus Anisotropy To quantify the scale-dependent
anisotropy in elasticity, we examine the elastic modulus
tensor, Cαβµν , which gives the change in stress in re-
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sponse to a strain under the constraint that the particles
reorganize to preserve mechanical equilibrium. [26] Our
study is similar in spirit to reference [9]. We define Cαβµν
on each square region of length R via a virtual, infinitesi-
mal deformation applied at the boundaries of the square.

As found in previous work [9, 15, 16]: Cαβµν =

CBorn
αβµν − ΞiγαβH

−1
iγjδΞ

jδ
µν , where CBorn

αβµν =
∂σαβ
∂εµν

is the par-

tial derivative of the stress with respect to a homogeneous

strain of the boundary and all particles, Hiγjδ = ∂2U
∂riγ∂rjδ

is the Hessian matrix, and Ξiγαβ = ∂2U
∂riγ∂εαβ

. Note that

Xiγ
µν = H−1

iγjδΞ
jδ
µν is the inhomogeneous component of par-

ticle motion subject to the given strain, εµν . For a given
relaxed configuration, we solve for Xiγ

µν numerically using
the sparse matrix routines in the SciPy library.

For an isotropic solid, one has only two independent
Lamé constants [17]: CLαβµν = λδαβδµν + µ(δαµδβν +
δανδβµ). A convenient basis for rank-2 symmetric ten-
sors in 2D is: e0αβ = (δαxδβx − δαyδβy)/

√
2, e1αβ =

(δαxδβy + δαyδβx)/
√

2, e2αβ = (δαxδβx + δαyδβy)/
√

2,
where e0 is an area-preserving pure shear along the axes
of the cell, e1 is an area-preserving pure shear along the
diagonals of the cell, and e2 is an isotropic expansion.
Writing the components of C in this basis (analogous to
Voigt notation [17]), one has: C22 which is the compres-
sion modulus (CL22 = λ + µ = K); C00, C11, C01, which
are shear moduli (CL00 = CL11 = µ and CL01 = 0); and
C02, C12 which characterize cross-coupling between shear
and compression (CL02 = CL12 = 0). To characterize the
anisotropy in the elastic response, we focus on the shear-
shear sector, C00, C11, C01.

In analogy with our procedure for the stress, we define
the angle-averaged shear modulus of a given region as
the half-sum of the eigenvalues, C±, of the C matrix in
the 0, 1 sector, µ = (C+ + C−)/2 and the anisotropic
part as their difference, δµ = (C+ − C−)/2. Their ratio,
εm = δµ/µ, then gives a dimensionless measure of the
anisotropy in shear modulus. Note that, physically, δµ is
equal to the difference between the stiffest and floppiest
shear moduli which would be encountered when shearing
the material along all possible orientations.

In figure 3(Top), we plot µ vs. R. At the shortest
lengthscales, where no inhomogeneous correction is al-
lowed, µ = µBorn. At longer lengthscales, µ decreases
monotonically toward the value of the true global value,
µg, as increasingly longer wavelength inhomogeneous cor-
rections are allowed to µ. It is well-known that on ap-
proach to φc, µBorn approaches a constant while µg van-
ishes. Therefore, one would not expect the µ vs. φ curves
to exhibit any simple scaling behavior.

In figure 3 (Center) and (Bottom), we plot Rδµ and
R0.62εm respectively vs. R. As expected, δµ vanishes
with increasing R as the elasticity becomes more and
more Lamé-like. As with εs, the δµ values fall off much
more slowly than the 1/R behavior one might expect
based on simple counting statistics, and the systems
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FIG. 3: (Top) µ vs. R at various φ (indicated in legend).
(Center) Rδµ vs. R. (Bottom) R0.62εm vs. R. Various φ are
normalized by an arbitrary constant, A.

which are closer to φc are more anisotropic at any R.
While δµ alone shows no simple scaling behavior, after
normalizing δµ by µ to obtain εm, one gets a very good
power-law scaling over more than a decade in R with
no features to indicate any characteristic lengthscale. At
large R, (R > 50), there are slight deviations from the
power-law form. However, we find that these are finite
size effects, and the power-law scaling extends to larger
R in larger systems.

Discussion and Summary We have shown that isotrop-
ically prepared, frictionless granular packings, exhibit a
characteristic lengthscale which grows as φ → φc from
above and is consistent with a divergence at φc. The
lengthscale is exhibited by the anisotropy in the coarse-
grained stress, εs, but not by the anisotropy in the coarse-
grained shear modulus, εm. εm has a simple power-law
form with a non-trivial exponent, but this form only ap-
pears when the anisotropy in modulus, δµ, is properly
normalized by the scale dependent modulus, µ, itself.

The behavior of εs and εm should place important
constraints on various theoretical approaches to under-
standing the mechanical properties of static granular me-
dia. One of the most promising recent approaches, pro-
posed by Henkes and Chakraborty, is based on a sta-
tistical ensemble which equally weights all continuum
stress fields which satisfy force balance and positivity
constraints [18]. Previous work within this framework
focused on pressure-pressure correlations where no in-
teresting lengthscale was detected (in the isotropically
prepared state) in either experiments or simulations [4].
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It should be possible to compute εs within the Henkes-
Chakraborty framework and check against the results for
εs obtained here and from experimental data.

In the present work, we have performed simulations
at fixed φ near φc, but we have not attempted a careful
convergence to φc and have made no attempt to show a
true divergence or measure the associated scaling expo-
nent. ξ grows by only 50% from φ = 0.88 to φ = 0.85.
It is now known that even freely cooling systems near φc
exhibit slow, glassy dynamics [19] during the quench, and
the large system sizes studied prevented us from equili-
brating configurations any closer to φc than φ = 0.85.
Preparing large systems in mechanical equilibrium near
φc to make precision measurements of scaling exponents
represents a fundamental challenge and may require the
development of more sophisticated numerical tools and
protocols.

In granular systems, no studies have probed the
anisotropy in modulus as we have done here. However,
one quantity has been probed which is related to the
linear elastic response at various lenthscales. Ellenbroek
and co-workers [20] discovered that the relative fluctu-
ations, h, in the contact forces in response to a point
load scaled like h ∼ r−1.6 where r is the distance from
the loading point. One might expect this exponent to be
related to the exponent measured here that governs the
relative anisotropy in the shear modulus. The scaling
in reference [20] was only obtained beyond some char-
acteristic lengthscale which diverged on approach to φc.
Whether such a lower cutoff to the scaling behavior in εm
emerges on a precise convergence to φc is an important
open question.

In principle, it should be straightforward to analyze
stress fields from experiment in much the same way we
have analyzed data from our simulations here. Studying
the spatial structure of the stress and modulus in large
systems near φc in both experiments and simulations to
quantify the precise form of the divergence of ξ and to
determine whether a similar lengthscale emerges in εm
should remain a high priority for the community.
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