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We report the evolution of the fractional quantum Hall state (FQHS) at total Landau level (LL)
filling factor ν = 7/2 in wide GaAs quantum wells in which electrons occupy two electric subbands.
The data reveal subtle and distinct evolutions as a function of density, magnetic field tilt-angle,
or symmetry of the charge distribution. At intermediate tilt angles, for example, we observe a
strengthening of the ν = 7/2 FQHS. Moreover, in a well with asymmetric change distribution, there
is a developing FQHS when the LL filling factor of the symmetric subband νS equals 5/2 while the
antisymmetric subband has filling 1 < νA < 2.

PACS numbers: 73.43.Qt 73.63.Hs

The fractional quantum Hall states (FQHSs) at the
even-denominator Landau level (LL) filling factors [1]
have recently come into the limelight thanks to the theo-
retical prediction that these states might be non-Abelian
[2] and be useful for topological quantum computing
[3]. This expectation has spawned a flurry of investi-
gations, both experimental [4–10] and theoretical [11–
13], into the origin and stability of the even-denominator
states. Much of the attention has been focused on
the ν = 5/2 FQHS which is observed in very low dis-
order two-dimensional electron systems (2DESs) when
the Fermi energy (EF ) lies in the spin-up, excited-state
(N = 1), LL of the ground-state (symmetric, S) elec-
tric subband, namely in the S1↑ level. Here we examine
the stability of the FQHS at ν = 7/2, another even-
denominator FQHS, typically observed when EF is in
the S1↓ level (Fig. 1(a)) [4, 7]. The ν = 7/2 FQHS,
being related to the 5/2 state through particle-hole sym-
metry, is also theoretically expected to be non-Abelian.
Our study, motivated by theoretical proposals that the
even-denominator FQHSs might be favored in 2DESs
with ”thick” wavefunctions [11–13], is focused on elec-
trons confined to wide GaAs quantum wells (QWs). In a
realistic, experimentally achievable wide QW, however,
the electrons at ν = 7/2 can occupy the second (anti-
symmetric, A) electric subband when the subband en-
ergy spacing (∆) is comparable to the cyclotron energy
h̄ωc (Figs. 1(b-d)). Here we experimentally probe the
stability of the ν = 7/2 FQHS in wide QW samples with
tunable density in the vicinity of the crossings (at EF )
between the S1 and the A0 LLs.

Our samples were grown by molecular beam epitaxy,
and each consist of a wide GaAs QW bounded on each
side by undoped Al0.24Ga0.76As spacer layers and Si δ-
doped layers. We report here data, taken at T ≃ 30 mK,
for three samples with QW widths of W = 37, 42, and
55 nm. The QW width and electron density (n) of each
sample were designed so that its ∆ is close to h̄ωc at the
magnetic field position of ν = 7/2. This enables us to
make the S1 and the A0 LLs cross at EF by tuning n or
the charge distribution asymmetry, which we achieve by

applying back- and front-gate biases [7, 14–16]. For each
n, we measure the occupied subband electron densities
nS and nA from the Fourier transforms of the low-field
(B ≤ 0.5 T) Shubnikov-de Haas oscillations [14, 15], and
determine ∆ = (πh̄2/m∗)(nS−nA), wherem

∗ = 0.067me

is the GaAs electron effective mass. At a fixed total den-
sity, ∆ is smallest when the charge distribution is ”bal-
anced” (symmetric) and it increases as the QW is im-
balanced. Our measured ∆ agree well with the results
of calculations that solve the Poisson and Schroedinger
equations to obtain the potential energy and the charge
distribution self-consistently (see, e.g., Figs. 1(a,d)).

Figure 1 shows a series of longitudinal (Rxx) and Hall
(Rxy) resistance traces in the range 3 < ν < 4 for a
42 nm-wide QW sample, taken at different n from 2.13
to 2.96 × 1011 cm−2 while keeping the total charge dis-
tribution balanced. As n is increased in this range, ∆
decreases from 64 to 54 K while h̄ωc at ν = 7/2 increases
from 50 K to 70 K, so we expect crossings between the
S1 and A0 levels, as illustrated in Figs. 1(a-d). These
crossings manifest themselves in a remarkable evolution
of the FQHSs as seen in Fig. 1. At the lowest n, which
corresponds to the LL diagram shown in Fig. 1(a), Rxx

shows a reasonably deep minimum at ν = 7/2, accom-
panied by a clear inflection point in Rxy at 7/2(h/e2),
and a weak minimum near ν = 10/3. These features
are characteristic of the FQHSs observed in high-quality,
standard (single-subband) GaAs 2DESs, when EF lies in
the S1↓ LL [4, 7]. As n is raised, we observe an Rxx spike
near ν = 7/2, signaling a crossing of S1↓ and A0↑. At
n = 2.51× 1011 cm−2, these levels have crossed, and EF

is now in A0↑ (Fig. 1(b)). There is no longer a minimum
at ν = 7/2 and instead, there are very strong minima at
ν = 10/3 and 11/3. Further increasing n causes a cross-
ing of S1↑ and A0↑ and, at n = 2.63× 1011 cm−2, EF at
ν = 7/2 lies in S1↑ (Fig. 1(c)). Here the Rxx minimum
and Rxx inflection point at ν = 7/2 reappear, signaling
the return of a FQHS. As we increase n even further, S1↑
and A0↓ cross and, at n = 2.96×1011 cm−2, when EF at
ν = 7/2 lies in A0↓, there is again no ν = 7/2 minimum
but there are strong FQHSs at ν = 10/3 and 11/3.
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FIG. 1. (color online) Left panel: Waterfall plot of Rxx and
Rxy traces at different densities for a 42-nm-wide GaAs QW.
(a-d) Schematic LL diagrams at ν = 7/2 for different densi-
ties corresponding to the traces marked a-d in the left panel.
The subband separation, cyclotron, and Zeeman energies are
marked as ∆, h̄ωc, and EZ , respectively. Self-consistently cal-
culated charge distributions are shown in the insets to (a) and
(d) for n = 2.13 and 2.96× 1011 cm−2.

The above observations provide clear and direct evi-
dence that the even-denominator ν = 7/2 FQHS is stable
when EF is in an excited (N = 1) LL but not when EF

lies in a ground-state (N = 0) LL [7]. Examining traces
taken at numerous other n, not shown in Fig. 1 for lack
of space, reveal that the appearances and disappearances
of the ν = 7/2 FQHS are sharp, similar to the behavior
of the 5/2 FQHS at a LL crossing [17]. It is noteworthy
that when the two crossing levels have antiparallel spins,
a ”spike” in Rxx at the crossing completely destroys the
FQHS at ν = 7/2 and nearby fillings. At the crossing of
two levels with parallel spins, on the other hand, there
is no Rxx spike. These behaviors are reminiscent of easy-
axis and easy-plane ferromagnetism for the antiparallel-
and parallel-spin crossings, respectively [16, 18].
Next, we examine the evolution of the ν = 7/2 FQHS

in the presence of a parallel magnetic field componentB||,
introduced by tilting the sample so that its normal makes
an angle θ with the total field direction (Fig. 2(b)). Fig-
ure 2(a) captures this evolution for electrons confined to
a symmetric, 37-nm-wide QW [19]. This QW is narrower
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FIG. 2. (color online) (a) Rxx and Rxy traces for a 37-nm-
wide GaAs QW at n = 2.34×1011 cm−2 at different tilt angles
θ as depicted in (b). (c) Charge distribution calculated self-
consistently at B = 0. (d) LL diagram at θ = 0 at ν = 7/2.

so that, at n = 2.34× 1011 cm−2, its ∆ (= 82 K) is well
above h̄ωc (= 55 K). The θ = 0 trace then corresponds to
EF lying in S1↓, as shown in Fig. 2(d). As θ is increased,
we observe only a gradual change in the strength of the
ν = 7/2 FQHS, until it disappears at large θ >∼ 55◦. This
is not surprising since, in a two-subband system like ours,
we expect a severe mixing of the LLs of the two subbands
with increasing θ [20] rather than sharp LL crossings as
manifested in Fig. 1 data.

We highlight three noteworthy features of Fig. 2 data.
First, the ν = 7/2 Rxx minimum persists up to relatively
large θ (up to 50◦), and it even appears that the Rxy

plateau is better developed at finite θ (up to θ = 42◦)
compared to θ = 0, suggesting a strengthening of the 7/2
FQHS at intermediate angles. Second, deep Rxx minima
develop with increasing θ at ν = 10/3 and 11/3, implying
the development of reasonably strong FQHSs at these
fillings. This is consistent with the results of Xia et al.
who report a similar strengthening of the 7/3 and 8/3
states - the equivalent FQHSs flanking the ν = 5/2 state
in the S1↑ level - when a wide QW sample is tilted in field
[9]. It is particularly remarkable that, at intermediate θ
(≃ 40◦), there are well-developed FQHSs at ν = 10/3 and
11/3 as well as at ν = 7/2. Third, the large magnitude
of B|| at the highest angles appears to greatly suppress
∆, rendering the electron system essentially into a bilayer
system [21]. This is evidenced by the dramatic decrease
in the strength of the ν = 3 QHS and the disappearance
of the ν = 11/3 Rxx minimum at θ = 79◦; note that a
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FIG. 3. (color online) (a) Rxx and Rxy traces for a 55-nm-wide GaAs QW, at a fixed n = 3.62 × 1011 cm−2, as the charge
distribution is made increasingly asymmetric. Values of ∆, measured from low-B Shubnikov-de Haas oscillations, are indicated
for each trace. Vertical arrows mark the positions of observed anomalous Rxx minima. (b) A color-scale plot of data in (a).
Solid and dotted lines are the calculated boundary within which the S1↑ and A0↑ levels are pinned together at EF [24]. The
dashed line represents the values of B at which, according to the calculations, the S1↑ level is half-filled; it tracks the positions
of the observed Rxx minima marked by vertical arrows in (a). (c-e) Schematic LL diagrams (left), charge distributions and
potentials (upper right), and wavefunctions ψS and ψA (lower right), self-consistently calculated at B = 0 (blue) and at ν = 4
(red). In (c-e), the filling factor of the S1↑ level equals 0, 0.5, and 1, respectively. In each panel, the calculated wavefunctions
are shifted vertically according to the calculated values of ∆ and ∆(B).

FQHS should not exist at ν = 11/3 in a bilayer system
with two isolated 2DESs as such a state would correspond
to 11/6 filling in each layer.

We now focus on data taken on a 55-nm-wide QW
where we keep the total n fixed and change the charge
distribution symmetry by applying back- and front-gate
biases with opposite polarity. In Fig. 3(a) we show a set
of Rxx traces, each taken at a different amount of asym-
metry. The measured ∆ is indicated for each trace and
ranges from 14 K for the symmetric charge distribution
to 70 K for a highly asymmetric distribution. In Fig.
3(b) we present a color-scale plot of Rxx with B and ∆
as x and y axes, based on an interpolation of Fig. 3(a)
data and many other traces taken at different values of
∆. When the charge distribution is symmetric or nearly
symmetric in this QW, ∆ ≃ 14 K is much smaller than
h̄ωc (= 85 K at ν = 7/2) so that the LL diagram is qual-
itatively the one shown in Fig. 1(d). Consistent with
this LL diagram, we observe a very strong ν = 4 QHS.
Also, since EF lies in the A0↓ level at ν = 7/2, there is
no ν = 7/2 FQHS and instead we observe strong FQHSs
at ν = 10/3 and 11/3. As ∆ is increased, we expect a
crossing of S1↑ and A0↓, leading to a destruction of the
ν = 4 QHS at the crossing. This is indeed seen in Figs.
3(a) and (b). What is striking, however, is that the ν = 4
Rxx minimum disappears over a very large range of ∆,

between 35 and 62 K. Even more remarkable are several
anomalous Rxx minima in this range of ∆ in the filling
range 3 < ν < 5, particularly those marked by arrows in
Fig. 3(a). These minima resemble what is observed in
the top trace but are seen at lower fields.

These features betray a pinning together, at EF , of
the partially occupied S1↑ and A0↓ levels, and a charge
transfer between them, in a finite range of B and gate
bias. As pointed out in Ref. [22], when only a small
number of quantized LLs belonging to two different sub-
bands are occupied, the distribution of electrons between
these levels does not necessarily match the B = 0 sub-
band densities. This leads to a mismatch between the
total electron charge density distributions at B = 0 and
high B, which is given by:

ρ(B) = e(eB/h)[νS · |ψS(B)|2 + νA · |ψA(B)|2], (1)

where νS and νA are the fillings of the S and A subbands
and ψS(B) and ψA(B) are the in-field subband wavefunc-
tions. The pinning and the inter-LL charge transfer help
bring these distributions closer to each other [22, 23].

To demonstrate such a pinning quantitatively and de-
termine the boundary inside which the S1↑ and A0↓ levels
are pinned together, we performed self-consistent calcu-
lations of the potential energy and charge distribution
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at high B for different QW asymmetries [24]. The calcu-
lated boundary is shown by solid white lines in Fig. 3(b),
and examples of the results of our calculations (at ν = 4)
are shown in Figs. 3(c-e). When we imbalance the QW
at ν = 4, at the lower boundary, as the A0↓ level reaches
the S1↑ level from below, νS = νA = 2 (Fig. 3(c)). As we
further imbalance the QW, electrons are transferred from
A0↓ to the S1↑ level, while these two levels are pinned
together and ∆(B) = h̄ωc−EZ remains unchanged. The
charge transfer ends at the upper boundary when νS = 3
and νA = 1 (Fig. 3(e)). In our calculations, we use
(νS = νA = 2) or (νS = 3, νA = 1) in Eq. (1) and find
the zero-field subband spacings ∆ for the two particular
QW asymmetries which give an in-field subband spacing
equal to ∆(B) = h̄ωc − EZ [24]. The boundary at other
magnetic fields in the range 3 ≤ ν ≤ 5 is calculated in a
similar fashion [24]. In Fig. 3(b), it is clear that the cal-
culated boundary matches reasonably well the region (in
∆ vs. B plane) in which we experimentally observe a dis-
appearance of the ν = 4 Rxx minimum and the appear-
ance of Rxx minima at anomalous fillings. This matching
is particularly remarkable considering that there are no
adjustable parameters in our simulations, except for us-
ing a single value (7.3) for the enhanced g-factor [24].

In Fig. 3(b) we include a dashed line representing
the values of B at which, according to our calculations,
the S1↑ level is exactly half-filled, i.e., νS = 5/2 and
νA = (ν − 5/2). This dashed line tracks the positions of
the observed Rxx minima marked by the vertical arrows
in (a) very well, suggesting that these minima indeed
correspond to νS = 5/2 [25]. This is an astonishing ob-
servation, as it implies a developing FQHS at 5/2 filling
of the symmetric subband even when a partially filled A0↓
level is pinned to the half-filled S1↑ level at EF !

We remark that while LL pinning in two-subband sys-
tems is a general phenomenon [22], its manifestation is
more pronounced in bilayer-like electron systems with
asymmetric (imbalanced) charge distributions [23]. For
example, we do not see signatures of LL pinning in the
data of Fig. 1 which were taken on an electron system
with a symmetric (balanced) charge distribution. This is
because an inter-subband charge transfer barely changes
the total charge distribution in this balanced QW. In
wide (W = 60 and 80 nm) GaAs QWs with imbalanced
charge distributions, on the other hand, in an indepen-
dent study Nuebler et al. [26] observed a pining of the
S1↑ and A0↑ levels, leading to the formation of a FQHS
when νS = 5/2 while the A0↑ level is partially occupied.

In summary, our results reveal distinct metamorphoses
of the ground-state of two-suband 2DESs at and near
ν = 7/2 as either the magnetic field is tilted, or the
density or the charge distribution symmetry are varied.
Most remarkably, we observe an apparent strenthening
of the ν = 7/2 FQHS at intermediate tilt angles, and a
developing FQHS when a half-filled S1↑ level is pinned
to a partially-filled A0↓ level.

We acknowledge support through the DOE BES (DE-
FG0200-ER45841) for measurements, and the Moore
Foundation and the NSF (DMR-0904117 and MRSEC
DMR-0819860) for sample fabrication and characteriza-
tion. A portion of this work was performed at the Na-
tional High Magnetic Field Laboratory, which is sup-
ported by the NSF, DOE, and the State of Florida.

[1] R. L. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui,
A. C. Gossard, and J. H. English, Phys. Rev. Lett., 59,
1776 (1987).

[2] G. Moore and N. Read, Nuclear Physics B, 360, 362
(1991), ISSN 0550-3213.

[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and
S. Das Sarma, Rev. Mod. Phys., 80, 1083 (2008).

[4] C. R. Dean, B. A. Piot, P. Hayden, S. Das Sarma, G. Ger-
vais, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.,
100, 146803 (2008).

[5] H. C. Choi, W. Kang, S. Das Sarma, L. N. Pfeiffer, and
K. W. West, Phys. Rev. B, 77, 081301 (2008).

[6] J. Nuebler, V. Umansky, R. Morf, M. Heiblum, K. von
Klitzing, and J. Smet, Phys. Rev. B, 81, 035316 (2010).

[7] J. Shabani, Y. Liu, and M. Shayegan, Phys. Rev. Lett.,
105, 246805 (2010).
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