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Hexadecapolar Kondo effect in URu2Si2?

Anna I. Tóth and Gabriel Kotliar
Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

We derive the coupling of a localized hexadecapolar mode to conduction electrons in tetragonal
symmetry. The derivation can be easily adapted to arbitrary multipoles in arbitrary environment.
We relate our model to the two-channel Kondo (2CK) model and show that for an f2-configuration, a
relevant crystal field splitting in addition to the 2CK interaction is intrinsic to tetragonal symmetry.
We discuss possible realizations of a hexadecapolar Kondo effect in URu2Si2. Solving our model we
find good agreement with susceptibility and specific heat measurements in Th1−xUxRu2Si2 (x� 1).

PACS numbers: 71.10.Hf, 71.27.+a, 75.20.Hr

In ref. [1], Cox addressed important differences be-
tween U- and Ce-based heavy electron systems in terms
of the atomic structure of their f -shell. The most prob-
able valence configuration in Ce-based systems has one
f -electron, whereas in many U-based materials, it is an
f2-many body state. In crystals where the U-site has
cubic symmetry, f2-states can give rise to quadrupolar
degrees of freedom which, when coupled to conduction
electrons, lead to two-channel Kondo (2CK) non-Fermi
liquid (NFL) behavior [1, 2]. Meanwhile various multipo-
lar orderings have been observed [3] as well as proposed
as candidates for “hidden order” (HO) in materials with
clear phase transitions but without an obvious order pa-
rameter. A prominent example in this area is given by
URu2Si2, for which quadrupolar [4], octupolar [5], hex-
adecapolar [6] and triakontadipolar [7] order parameters
have all been put forth. Some recent experiments have
ruled out quadrupolar order [8], whereas another might
implicitly hint at it [9]. On the other hand, the hy-
pothesis of active U hexadecapolar degrees of freedom
explains numerous experiments [10]. In this Letter, we
generalize the work of ref. [1], and present a simple con-
struction of low-energy Hamiltonians that describe the
coupling between multipoles and conduction electrons in
the tetragonal crystal field (TCF) of URu2Si2. We show
that in TCF, the low-energy degrees of freedom of an f2-
configuration couple symmetrically to multiple channels
of conduction electrons, regardless of the f2-coupling and
-level schemes. Taking hexadecapolar degrees of freedom
for U, and solving the resulting model with the numer-
ical renormalization group (NRG), we successfully de-
scribe the properties of Th1−xUxRu2Si2 (x� 1) (TURS)
in magnetic field [11, 12], and place the measurements
around the crossover between the local moment and 2CK
scaling regimes. Thus hexadecapolar fluctuations can
also explain the anomalies observed in TURS.

To construct a tractable model, valid at very low-
energies, we take into account only the two lowest-lying
5f -configurations with double occupancy (n5f = 2). This
is motivated by recent LDA+DMFT calculations, which
indicate that, while U has mixed valence in URu2Si2 with
2 ≤ n5f ≤ 3, two TCF singlets with n5f = 2 and differ-

ent symmetries have the highest probability [6]. The U
degrees of freedom are then described by a J = 4 multi-
plet, split by the TCF. The ground state and the nearest
excited level are, respectively, time-reversal and parity
even, A 2g and A 1g basis states of the group T ×D4h .
Here T ≡ {I, T } is the time-reversal symmetry group,
I the identity, T the time-reversal operator; and D4h

the tetragonal point group including parity. Viz., the
lowest-lying singlets are : |A 2g〉 ≡ i√

2
(|4〉 − | − 4〉) , and

|A 1g〉 ≡ cosφ√
2

(|4〉 + | − 4〉) + sinφ |0〉 , given in terms of

the eigenvectors, |Jz〉 , of the operator Ĵz in the J = 4
multiplet with the quantization axis chosen parallel to
the c-axis of the crystal. To keep the equations short, we
follow refs. [1, 2] and assume, the f -shell of the U atom
hybridizes mostly with l = 3, J = 5

2 conduction elec-

trons. Conduction electrons at the local site, ψ†l J Jz , can
be classified into the four double-valued or spinor irre-
ducible representations (irreps), Γ 6p, Γ 7p of the tetrag-
onal double point group, D̄4h , with p = g/u for parity
even/odd irreps (i.e. for l even/odd). Under time-reversal

symmetry T ψ†l J JzT
−1 = (−)l− J + Jz ψ†l J (−Jz) . We set

up a basis so that the α = ± components of the Kramers
doublets, Ψ†

Γ
(n)
jp α

(where n enumerates doublets of the

same type within one J multiplet, and j = 6, 7) comply

with our convention : T Ψ†
Γ
(n)
jp +
T −1 = Ψ†

Γ
(n)
jp −

, imply-

ing the same for annihilation operators. For the local
conduction electron basis, we choose the following two
independent Γ 7u Kramers doublets for creation opera-

tors :

 Ψ†
Γ
(1)
7u +

Ψ†
Γ
(1)
7u−

 ≡ [
ψ†5

2

−ψ†− 5
2

]
, Ψ†

Γ
(2)
7u

≡

[
ψ†− 3

2

−ψ†3
2

]
,

and one Γ 6u : Ψ†
Γ
(1)
6u

≡

[
ψ†1

2

−ψ†− 1
2

]
, on using the com-

pact notation: ψ†Jz ≡ ψ†
3 5

2 Jz
. Adjoint doublets with the

same transformation properties in the same basis are :
Ξ

Γ
(n)
ju α

≡
∑
β ∈{+,−} εαβ (Ψ†

Γ
(n)
ju β

)† with εαβ the two-

by-two antisymmetric matrix with entry ε+− = 1.

Kondo Hamiltonians are made up of spin-flip and
diagonal processes: HK = H⊥ + Hz . When con-



2

structing these two parts connecting the two singlets,
the only relevant, non-trivial tensor products of irreps
are Γ 6u ⊗ Γ 6u = Γ 7u ⊗ Γ 7u = A 1g ⊕ A 2g ⊕ E g and
A 2g ⊗ A 2g = A 1g [13]. Taking the appropriate tetrag-
onal Clebsch–Gordan coefficients, symmetry thus binds
the form of the spin-flip and diagonal parts to be [13]

H⊥ = i

2∑
n,m= 1

J nm
⊥

(
Ψ†

Γ
(n)
7u +

Ξ
Γ
(m)
7u −

+ Ψ†
Γ
(n)
7u −

Ξ
Γ
(m)
7u +

)
× |A 1g〉〈A 2g| + h.c., (1)

Hz =
∑2
n,m= 1

∑
i∈{1,2} J nm i

z (2)

×
(

Ψ†
Γ
(n)
7u +

Ξ
Γ
(m)
7u −

− Ψ†
Γ
(n)
7u −

Ξ
Γ
(m)
7u +

)
|A ig〉〈A ig|.

The couplings are real and must satisfy J 1 2 i
z = J 2 1 i

z

to ensure hermiticity, but otherwise arbitrary. We omit-
ted processes including Γ6 electrons as they decouple
from the impurity. The hexadecapolar, i.e. “spin-flip”
fluctuations are thus coupled to four species of con-
duction electrons, namely to the two independent Γ7u

Kramers doublets. H⊥ has the structure of the 2CK
model where the role of spin index is played by the index
distinguishing the two different Γ7u’s, and the channels
are distinguished by the Kramers indices. To make this
correspondence more explicit, we introduce the opera-

tors :

[
ηa ↑
ηa ↓

]
≡
[
ψ− 3

2

ψ 5
2

]
, η b ≡

[
ψ 3

2

−ψ− 5
2

]
, and perform

the unitary transformation: |A 1g〉 → |A′1g〉 ≡ i |A 1g〉 ,
which allows us to rewrite H⊥ in the standard nota-

tion : H⊥ =
J 2 1

⊥ −J 1 2
⊥

2 η†q µ σ
+
µ ν η q ν S

− + h.c. + O Sx ,
with q ∈ {a, b} , µ, ν ∈ {↑, ↓} . Here and in the fol-
lowing, repeated channel (q) and spin (µ, ν) indices are
to be summed over; O = O† contains only conduction
electrons [24]; σ+ ≡ σx + iσy is composed of Pauli
matrices; and S+ ≡ Sx + iSy ≡ |A 2g〉〈A′1g|; Sz ≡(
|A 2g〉〈A 2g| − |A′1g〉〈A′1g|

)
/ 2 ; S− ≡ S+† ; 1l ≡

|A 2g〉〈A 2g|+ |A′1g〉〈A′1g| .
Channel symmetry follows from time-reversal symme-

try. The operator, O Sx is irrelevant around the 2CK
fixed point (and marginal in the free fermion scaling
regime), as shown by NRG calculations or using confor-
mal field theory results [14, 15]. It does not destroy the
2CK state, as it neither breaks channel symmetry, nor
lifts the spin degeneracy. Thus we must have J 1 2

⊥ 6=
J 2 1
⊥ for overscreening to occur. This asymmetry comes

up naturally e.g. if we start off with a spherical sym-
metric Anderson Hamiltonian, perform the Schrieffer–
Wolff transformation to arrive at a Kondo-type of inter-
action and then project to the TCF states, |A 2g〉, |A 1g〉
at strong spin-orbit (i.e. jj) coupling [1, 2, 14].

The diagonal part, Hz cannot lead to NFL behavior
by itself, but it can quite possibly destroy it. Channel
symmetry is preserved by time-reversal symmetry. How-
ever, the level degeneracies are lifted by the TCF, both

between the |4A 2/1g〉 states and also in each screening

channel between Γ
(n)
7u electrons with different n’s. The

dangerous terms are

H rel
zi = ∆imp η

†
q µ η q µ Sz , (3)

H rel
zc = ∆cond η

†
q µ σ

z
µν η q ν 1l . (4)

Both TCF splittings are relevant around the 2CK
fixed point with scaling dimension 1

2 [14, 15],
and present in Hz with amplitudes ∆imp =(
J 2 2 1
z + J 1 1 1

z − J 2 2 2
z − J 1 1 2

z

)
/ 2 , and ∆cond =(

J 2 2 1
z − J 1 1 1

z + J 2 2 2
z − J 1 1 2

z

)
/ 4 . In fact, they are

of the only type of relevant perturbation, when channel
symmetry is intact [15]. Thus for this model to exhibit
2CK scaling in some temperature range, ∆imp and ∆cond

must fall below the Kondo temperature, TK . This nec-
essarily requires fine-tuning, and the basic assumption
of the A 2g − A 1g scenario—and, as we show below, of
any other doublet-ground state scenarios—is that this
accidental degeneracy is responsible for the unique be-
havior of URu2Si2 among the large number of U-based
heavy fermions. We note that the ordinary TCF split-
ting, ∆ord Sz is of the same type, and thus has the same
scaling properties as Eq. (3) and (4) in all scaling regimes,
as η†q µ η q µ is marginal. Moreover LDA+DMFT calcu-
lations for URu2Si2 found ∆ord < TK , confirming the
accidental degeneracy on the scale of TK [6].

A local, z-directed magnetic field results in two leading
additions to the Hamiltonian : Hmagi ∝ µB i (S+ − S−)

and Hmagc ∝ µB
∑
Jz∈{± 3

2 ,±
5
2}
Jz ψ

†
Jz
ψJz1l for the two-

singlet part and for the local conduction electrons, re-
spectively. These terms have similar effects as H rel

zi/c.

Namely, the impurity part, H rel
zi + Hmagi , amounts to

an effective magnetic field (or TCF splitting) pointing
into other than the z-direction. The same holds true
for the conduction electrons with the effective magnetic
field/TCF splitting being different in the two channels.
Thus while HK is not identical to the 2CK Hamiltonian,
it flows to the same fixed point when the relevant per-
turbations, which split apart the two different Γ7 irreps,
or the two local singlets, vanish; and the application of
magnetic field thus breaks both the channel and the spin
symmetry of the 2CK model.

For the order of TCF levels in URu2Si2, other scenarios
have also been put forth in the literature. It turns out
that the structure of the effective low-energy Hamilto-
nian for any two quasi-degenerate states is rather similar
to that of the two-singlet case considered above. This
applies also to a proposed Eg (or Γ5) doublet ground
state [11, 16, 17], formed by |Eg x〉, |Eg y〉. Fluctuations
within this doublet can couple to two products of irreps
of l = 3 electrons : Γ7⊗Γ7 and Γ7⊗Γ6. In the 2CK lan-
guage, the two different irreps play the role of spin, while
their Kramers indices, connected by time-reversal, play
the role of channel index again. 2CK scaling would occur
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FIG. 1: (a) : Symbols : Molar susceptibility, χmolc,5f , of the 5f
electrons in Th1−xUxRu2Si2 at x = 0.03 vs T in magnetic
fields between H = 0 and 5 T (H ‖ c) reproduced from ref.
[12]. (a) − (b) : Curves : The real part of the local, dynamic
susceptibility of the 2CK model in the presence of magnetic
field at T = 0 computed with density matrix-NRG at Kondo
coupling J2CK = 0.15D (in units of bandwidth) with dis-
cretization parameter Λ = 2 and keeping at most 2100 mul-
tiplets of U(1)spin×SU(2)charge1×SU(2)charge2 at each NRG
step [18]. (c) : The crossover scale, TH (defined as the inter-
sect of the low-ω and high-ω asymptotes of Reχ(ω), see plot
(b)) shows quadratic and linear H-dependence in the 2CK and
local moment scaling regimes, respectively; TK , the crossover
scale between the local moment and 2CK scaling regimes, is
≈ 1.3 K. Notice that the experimental data forH = 0 T can be
fitted equally well with every NRG curve where H / 0.2TK .

down to T = 0, if the two lower-lying irreps were degen-
erate, i.e. if the spin symmetry of the 2CK model were
unbroken. As the degeneracy is approximate, the system
will flow to a Fermi liquid (FL) fixed point eventually.

In the HO phase of URu2Si2, the ref. [6]
proposed order parameter, 〈|A 2g〉〈A 1g|〉, is non-
vanishing due to its real part which, in highest or-
der of the multipole expansion, contains the ex-
pectation value of the hexadecapolar A2g tensor:[
(Ĵ2
x − Ĵ2

y )(ĴxĴy + ĴyĴx) + (ĴxĴy + ĴyĴx)(Ĵ2
x − Ĵ2

y )
]

[6].

However, the same reasoning can be repeated for
〈|Eg x〉〈Eg y|〉, whose real part also contains the same
hexadecapolar ordering. These points are substantiated
by the Hamiltonian construction for an Eg ground state
in the supplement.

It has long been recognized that χc, the (magnetic)
dipole susceptibility of Th1−xUxRu2Si2 along the c axis
shows log T behavior at low-T (see refs. [11, 17] and Fig.
1) in accord with the 2CK descriptions corresponding to
both scenarios. However, susceptibility and resistivity
measurements find that the magnetic field (H) induced
crossover scale to a FL depends on H linearly, i.e. TH ∝
Hη with η = 1, which does not agree with the η = 2
behavior corresponding to the 2CK scaling regime [12].
To make contact with these experiments, we solved the
model, Eq. (1) by NRG, and confirmed that it indeed
flows to the 2CK fixed point where OSx is irrelevant.
Then we added a magnetic field, mimicked only by Eq.
(3), to the 2CK model, and solved this model using an
upgraded version of our density matrix-NRG code [18].
The values of the magnetic field and the Kondo coupling
were adjusted to fit the experimental data of refs. [11, 12].

Invoking ω/T scaling [19], we fitted the T -dependence
of χc by the real part of the dynamic susceptibility of
the 2CK model in magnetic field, as we trust our dy-
namic correlation functions (produced by the density ma-
trix algorithm at T = 0) better than the thermodynamic
quantities. Fig. 1 shows convincing agreement between
theory and experiment apart from the small discrepancy
for T > 30 K, i.e. for large energies where the resolution
of NRG is limited. We obtained TK ≈ 1.3 K from the
fit (see the caption of Fig. 1 for further details on TK).
This finding places the measurements in magnetic fields
around the crossover region between the local moment
and 2CK scaling regimes. In both regimes, scale invari-
ance entails the hyperscaling relation, η + ν = 2 with
ν the critical exponent defined by χ ∝ H−ν . Thus for
H = 0, the observed ν = 0 gives η = 2, i.e. for T between
0.1 and 10 K, the system is in the 2CK scaling regime.
In contrast, for H = 1 to 5 T, the experiments measure
η = 1 resulting ν = 1. Thus, we conclude, these magnetic
fields in addition to the ubiquitous, relevant TCF split-
ting, are (slightly) larger than TK and the system flows
directly from the local moment regime to a one-channel
Kondo fixed point without traversing the 2CK scaling
regime. In Fig. 1(a), the ratios of magnetic fields to TK ,
fitting the susceptibility, further illustrate this point.

By taking a closer look at the specific heat coefficient
in Fig. 2(a), we can reinforce these statements, and get
another estimate for TK . Two regimes for the given
magnetic field values are clearly visible: At low T ’s, the
curves for H = 0.5 and 1 T slightly overshoot the curve
at H = 0 T, in contrast to the curves for H ≥ 2 T which
exhibit a bump at T ≈ H. The rise of γ ≡ Cp,5f/T
for low-fields at low-T is reminiscent of the 2CK scaling
regime, except that the measured T -dependence of γ at
low-T for H = 0 is not quite logarithmic. These findings
can be explained by the presence of an effective TCF
splitting, 0 < ∆ < TK , already at H = 0, and placing
TK between 1 and 2 T. From the susceptibility fit we esti-
mate : ∆ is anywhere below about 0.2TK (c.f. Fig. 1(b)).
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FIG. 2: (a) : 5f electronic specific heat coefficient in units
of R (Cp,5f/TR) of Th1−xUxRu2Si2 at x = 0.07 vs T for
H between 0 and 12 T, reproduced from ref. [17]. (b) : 2CK
specific heat coefficient for different H’s from NRG averaged
over 10 z values [21] at J2CK = 0.1D (in units of band-
width) with Λ = 2.5 and keeping at most 3200 multiplets of
U(1)spin×SU(2)charge1×SU(2)charge2 at each NRG step. The
two sets of curves display the same trend, but there is a factor
of ≈ 4 difference in the magnitudes (depending on the pre-
cise value of TK). We ascribe this difference to experimental
inaccuracy, as we observe a factor of ≈ 2 difference between
the magnitudes of Cp,5f/T for the same material published in
refs. [11] and [17].

These assertions are further confirmed by our NRG cal-
culations for the specific heat coefficient (see Fig. 2(b)
and c.f. ref. [20]). For H > TK , the bumps at T ≈ H
correspond to the Schottky anomaly due to the Zeeman
splitting between the two local states.

In the 2CK model, if ∆ < TK , there is a NFL re-
gion over 2 log

(
TK

∆

)
decades, since the splitting induced

crossover scale to a Fermi liquid depends on ∆ quadrat-
ically. Susceptibility measurements find a NFL region
over at least one decade, putting an upper bound on the
ratio, ∆/TK < 0.6 and giving the conservative estimate:
TK < 5 T and ∆ < 3 T.
Conclusions. Motivated by recent findings on the

electronic structure of URu2Si2 [6], we derived the Kondo
coupling between localized hexadecapolar fluctuations
and conduction electrons in TCF. The derivation can
easily be adapted to arbitrary situations, as further illus-
trated in the supplement. In each case, the local degrees
of freedom are symmetrically coupled to two different ir-
reps of conduction electrons. The coupling has the form
of the 2CK model plus relevant, spin symmetry breaking
perturbations present even in zero magnetic field. Solv-
ing the model with NRG we showed that the hypothesis
introduced in ref. [6] to describe the HO in URu2Si2 can
consistently account for the behavior of TURS. Nonethe-
less this behavior does not discriminate between different
competing scenarios for the ground state–excited state
sequence in this material. As there are always two ir-
reps of conduction electrons involved in the coupling, and
they are not connected by symmetry, we expect a FL to
emerge at sufficiently low T ’s. Hence the intermediate
NFL regime, observed in URu2Si2, is a result of acci-
dental degeneracy, and responsible for the unique prop-

erties of this compound in the dilute and dense limits,
among the hundreds of known U-based heavy fermions.
We found that the scale of the TCF splitting and TK
is smaller in TURS than in URu2Si2 [6]. The splitting
between the two Γ7 irreps should be sensitive to the con-
duction electron filling, and we expect it to be larger
in La1−xUxRu2Si2 where clear FL behavior is observed
[22]. In this context it is also worth pointing out that in
TURS, the resistivity follows an approximate log T be-
havior with a negative coefficient suggesting a crossover
to FL behavior at sufficiently low T ’s. The study of the
resistivity, however, will likely require a more realistic
model for TURS including all bands present in the solid;
and also a more sophisticated approach to calculating
the resistivity in NFL quantum impurity models than
the ones presently available [23].
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