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We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the pres-
ence of Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved
time-reversal symmetry is a quantum valley Hall insulator for small Rashba SO coupling λR, and
transitions to a strong TI when λR >

√
U2 + t2⊥, where U and t⊥ are respectively the interlayer

potential and tunneling energy. Different from a conventional quantum spin Hall state, the edge
modes of our strong TI phase exhibit both spin and valley filtering, and thus share the properties of
both quantum spin Hall and quantum valley Hall insulators. The strong TI phase remains robust
in the presence of weak graphene intrinsic SO coupling.

PACS numbers: 73.22.Pr,73.43.Cd,75.70.Tj

Recently, there has been a surge of interest in time-
reversal invariant topological insulators (TI) [1], a new
quantum phase of matter that carries an odd number
of helical edge (two-dimensional TIs) or surface (three-
dimensional TIs) states. Two-dimensional TI, commonly
known as quantum spin Hall (QSH) insulator, occurs in
strongly spin-orbit coupled material and was predicted in
single-layer graphene with intrinsic spin-orbit (SO) cou-
pling [2] and in HgTe/CdTe quantum well at large well
thicknesses [3]. The latter has been confirmed in exper-
iment [4]; graphene, however, has a weak intrinsic SO
coupling [5], making it difficult to observe a QSH state.
To remedy the situation, a number of recent theoreti-
cal [6–10] and experimental [11] work have demonstrated
that surface doping on graphene with heavy atoms can
dramatically boost the SO coupling strength. Moreover,
the broken out-of-plane mirror symmetry creates strong
Rashba SO coupling [11], which can induce an interesting
quantum anomalous Hall state [7, 8] in the presence of
proximity magnetic exchange interaction.

In this Letter, we present a theory of topological phases
in gated bilayer graphene in the presence of Rashba
SO coupling tR under preserved time-reversal symmetry.
From arguments of band structure and Z2 topological in-
variant, we show that this gated bilayer system exhibits
two topologically distinct phases, from a quantum valley
Hall state at weak tR to a strong topological insulator
state at strong tR. In a zigzag-edged bilayer system, the
strong TI phase has the properties of both quantum val-
ley Hall and quantum spin Hall states. At a fixed tR,
topological phase transition between the two states can
be achieved by gate tuning. We also show that the strong
TI phase remains robust if weak intrinsic SO coupling is
present in addition to the Rashba effect.

The tight-binding Hamiltonian for the AB-stacked bi-
layer graphene [12] in the presence of Rashba SO coupling
and interlayer potential difference (due to an applied gate

voltage) is [8, 13]

HBLG = HT
SLG +HB

SLG + t⊥
∑

i∈T,j∈B,α
c†iαcjα

+U
∑
i∈T,α

c†iαciα − U
∑
i∈B,α

c†iαciα, (1)

where the single-layer Hamiltonian HT,B
SLG for the top (T)

and bottom (B) graphene layers including Rashba SO
coupling [2, 14] is

HSLG = t
∑
〈ij〉α

c†iαcjα + itR
∑
〈ij〉αβ

(sαβ×dij)zc†iαcjβ , (2)

where c†iα is the usual creation operator for electron with
spin α = ±1 on site i and t is the intralayer tunneling
energy between nearest neighhor sites. The second term
on the right-hand side is the Rashba SO interaction with
coupling strength tR, s is the Pauli matrices for the spin
degrees of freedom, and dij is the lattice vector pointing
from site j to site i. Interlayer tunneling between the two
layers is given by the third term in Eq. (1) with a tun-
neling energy t⊥, whereas interlayer potential difference
2U is given by the last two terms.

We first analyse the bulk band structure obtained from
the above Hamiltonian. Figs. 1a-d shows the evolution
of the bulk band structure with increasing strength of
Rashba SO coupling at fixed interlayer potential differ-
ence. In bilayer graphene, a bulk band gap can be opened
(panel a) by applying an external gate voltage across the
layers [15] to break the inversion symmetry in the out-
of-plane direction. When the Fermi level lies within the
bulk gap, gated bilayer graphene is a quantum valley Hall
(QVH) insulator [8, 16], characterized by a quantized val-
ley Chern number Cv, which is defined as the difference
between the Chern numbers at the two valleys K and K’.
When the Rashba SO coupling tR is turned on, we find
that the bulk gap decreases gradually with tR (panel b)
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FIG. 1: Evolution of band structure of gated bilayer graphene at a fixed interlayer bias U/t = 0.1 for increasing Rashba SO
coupling tR/t = 0, 0.04, 0.0582, 0.08. tR is assumed to be the same on both layers for concreteness. First row (panels a-d): bulk
system with periodic boundary conditions; second row (panels e-h): finite strip with zigzag edges; third row (panels i-l): finite
strip with armchair edges. In the second row, the dark/blue and light/green curves inside the bulk gap are used to represent
edge states located at opposite boundaries. kx is normalized to inverse lattice constant 1/a and the valleys are indicated as K,
K’.

and vanishes completely (panel c). Since turning on the
Rashba coupling from zero is not accompanied by any
band gap closing, it can be inferred that the system re-
mains a QVH insulator at finite tR and U , before the
bulk gap vanishes in panel c. We find that the bulk gap
reopens (panel d) when tR is further increased, and in
the vicinity of gap closing the conduction and valance
bands cross each other linearly as a function of tR char-
acteristic of a band inversion. This suggests a topologi-
cal phase transition, and in the following we show that
is indeed so with the emergent phase a two-dimensional
strong topological insulator that, interestingly, also pos-
sesses the properties of a QVH insulator in the sense that
the Z2 invariant [17] is 1 and the valley Chern number
Cv is also 1.

The Z2 invariant [17] characterizes the band topology
in the presence of time-reversal symmetry and is defined
by

Z2 =
1

2π

[∮
∂ HBZ

dk ·A(k)−
∫
HBZ

d2kΩz(k)

]
mod(2),

(3)

where A(k) = i
∑
n〈un(k)|∇kun(k)〉 is the Berry con-

nection summed over all filled band indices n with the
periodic part of the Bloch function denoted by |un(k)〉,
Ωz(k) = (∇k × A)z is the z component of the Berry
curvature. By virtue of Kramer’s theorem |un(k)〉 sat-
isfies the time-reversal invariant constraint |un(−k)〉 =
Θ|un(k)〉, where Θ is the time-reversal operator. There-
fore, we only need to calculate the line and surface in-
tegrals in Eq. (3) over half of the Brillouin zone (as de-
noted by ‘HBZ’ in the equation) that satisfies the time-
reversal constraint. We have computed Z2 numerically
from the Hamiltonian Eq. (1) using the method described
in Ref. [18]. Fig. 2 shows our calculated Z2 phase dia-
gram as a function of U and tR, where we find that the
regimes before and after gap closing are characterized
by topologically distinct phases. The system before gap
closing is in a QVH phase with a topologically trivial
Z2 = 0 invariant. After gap closing and reopening, we
find that Z2 = 1, therefore proving that the gated bilayer
graphene system is a strong TI.

At the topological phase transition critical point, the
gap closing condition allows us to obtain an analytic
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FIG. 2: (Color online) Phase diagram of the Z2 invari-
ant as a function of U and tR at fixed interlayer tunneling
t⊥/t = 0.1429. The color scale represents the magnitude of
the bulk gap in units of t. The dotted line plots the phase
boundary condition Eq. (5) between the quantum valley Hall
insulator (QVHI) and strong TI phases. The bulk gap de-
creases but remains finite at U 6= 0 as tR increases to large
values (dark/blue region below the light/green region) in the
strong TI phase.

expression of the phase transition boundary from a
low-energy Hamiltonian. Expanding the tight-binding
Hamiltonian Eq. (1) in the vicinity of K, K’ gives the
following eight-band low-energy Hamiltonian

H = v(ησxkx + σyky)1s1τ +
t⊥
2

(σxτx − σyτy)1s

+
λR
2

(ησxsy − σysx)1τ + U1σ1sτz, (4)

where η = ±1 labels the valley K, K’ degrees of freedom,
σ, s and τ are Pauli matrices representing the A-B sub-
lattice, spin, and layer degrees of freedom, respectively; 1
is the identity matrix, the Fermi velocity and Rashba cou-
pling are given respectively by v = 3ta/2 and λR = 3tR.
The low-energy Hamiltonian at k = 0 gives the energy
eigenvalues ε = ±U and six other eigenenergies that sat-
isfy the relationship ε3 − µU(ε2 + α2 − t2⊥ −U2)− (α2 +
t2⊥ + U2)ε = 0 where µ=±1. Imposing the gap closing
condition ε=0 we find the topological phase transition
boundary

λ2R = U2 + t2⊥. (5)

In Fig. 2 we plot Eq. (5) on the Z2 phase diagram, from
which we see that the analytic expression (dotted line)
describes accurately the phase transition boundary be-
tween the two phases obtained from our numerical Z2

calculations.
Graphene sheets have two principal edge terminations

along and perpendicular to the bond-length direction, re-
spectively known as armchair and zigzag terminations
[19]. The valleys K, K’ remain good quantum num-
bers in zigzag-edged strips but are mixed (and hence
no longer good quantum numbers) in armchair-edged
strips. We first examine the edge band structure in a
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FIG. 3: (Color online) Schematic of edge state propagation
in the zigzag edge geometry for (a) QVHI phase at small
tR; (b) strong TI state at large tR. The arrows on the edge
channels represent in-plane spin directions (out-of-plane spin
component is zero). Labels A-H and M-Q correspond to band
labels in Figs. 1 f and h.

bilayer graphene strip with zigzag edges along one di-
rection and periodic boundary condition along the other
direction. Fig. 1e shows the QVH phase at finite U and
tR = 0 characterized by a pair of spin-degenerate gapless
edge bands. We find that the two valleys are character-
ized by opposite Chern numbers ±1, therefore the valley
Chern number Cv = 2. With a finite Rashba SO coupling
(panel f), the spin degeneracy is lifted yielding two sepa-
rate pairs of gapless edge bands, and the bilayer system
remains a QVH insulator with the same valley Chern
number Cv = 2. It can be seen that the outer pair of
edge bands (e.g. at valley K, lines labeled A, B) connect
the conduction band with the valance band at the same
valley, whereas the inner pair of edge bands (e.g. C, D
at valley K) connect the two conduction bands or the
two valence bands at different valleys. When the bulk
gap is closed (panel g), the two pairs of edge bands at
each valley merge together with the bulk bands (the up-
ward and downward dips at K and K’); when the bulk
gap reopens (panel h) at a larger tR, only one pair of
non-degenerate edge states emerges. This change from
an even to an odd number of edge states signals a phase
transition from a topologically trivial to a topologically
nontrivial phase, consistent with our Z2 calculation. Re-
markably, we find that the valley Chern number remains
quantized, but changes to Cv = 1. This implies that the
strong TI phase is also a QVH insulator and enjoys the
same valley protection.

This is illustrated in Fig. 3 showing the edge modes of
the QVH and strong TI phases before and after bulk gap
closing. At small tR, the QVH phase (Fig. 3a) has two
pairs of counterpropagating edge states on each edge that
are valley-filtered with different valley quantum numbers
K and K’. At large tR after gap reopening the strong
TI phase carries only a single pair of counterpropagating
edge states. Although the z projections of spins are not
good quantum numbers, these counterpropagating edge
channels still carry helically opposite spins that are ro-
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tated from sz due to Rashba SO coupling. In the conven-
tional QSH phase [2], the counterpropagating edge states
constitutes a Kramer’s pair that are spin-filtered. A novel
feature in our strong TI phase is that because of valley
quantum number conservation, the pair of counterpropa-
gating edge states are both spin-filtered and valley-filtered
(Fig. 3b), consistent with our bulk topological invariant
results Z2 = 1 and Cv = 1. As a consequence, the strong
TI phase is topologically protected both by time-reversal
symmetry against weak non-magnetic disorder, and by
valley-inversion symmetry against weak magnetic disor-
der that is long-range (longer than lattice spacings) so
that intervalley scattering remains prohibited.

For armchair edge geometry, because valleys K and K’
overlap and are not good quantum numbers, there is no
QVH phase. At finite U and small tR before phase tran-
sition, the system is an ordinary insulator and does not
have any gapless edge state (Fig. 1 i - j). When the bulk
gap closes and reopens (panels k -l), a single pair of gap-
less edge states emerges that are not valley-filtered but
remain spin-filtered, as expected from a strong TI phase.
Unlike the zigzag case however, the armchair case has no
valley protection and thus carries a strong TI phase akin
to the conventional QSH state.

The predicted TI state in this Letter relies on the
presence of a strong Rashba SO coupling, which can be
achieved in principle through doping with adatoms [7–
9, 11]. This however also enhances the intrinsic SO cou-
pling, and therefore leads to a natural question whether
or not the TI state will be destroyed by the presence of
intrinsic SO coupling. We address this question by in-
cluding the intrinsic SO coupling term [20] in each layer
of the Hamiltonian Eq. (1). Fig. 4 shows the phase dia-
gram we obtained as a function of both Rashba SO and
intrinsic SO coupling strengths at a fixed interlayer po-
tential. First, for small tR, we find that the QVH phase
remains intact when the intrinsic SO coupling tISO is also
small. As tISO in each layer is increased, the individual-
layer quantum spin Hall state due to intrinsic SO cou-
pling prevails, leading to a phase transition to a weak
TI phase [21] which is analogous to a layered QSH sys-
tem. Despite each layer behaves as a QSH state, an even
number of such layers renders the overall system topolog-
ically trivial that is characterized by a vanishing Z2 and
an even number of gapless edge states. For large values
of tR, we identify a region in the phase diagram where
the strong TI phase remains robust. This occurs when
the intrinsic SO coupling is about an order of magnitude
weaker than the Rashba SO coupling. Indeed, at small
values of tISO the phase diagram remains qualitatively
similar to Fig. 2 at tISO = 0, with the only difference
that the gapless metallic regime (white region in Fig. 4)
between the QVH and strong TI phases becomes more
extended.

In conclusion, we have shown that gated bilayer
graphene hosts a strong topological insulator phase at
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FIG. 4: (Color online) Phase diagram as a function of Rashba
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on both layers) at finite U/t = 0.3. The color scale indicates
the magnitude of the bulk gap in units of t. The white region
corresponds to a metallic phase where there is no global gap
in the bulk band structure.

large Rashba spin-orbit coupling. The gate voltage can
serve as a topological switch that tunes between the
quantum valley Hall phase and the strong topological
insulator phase. This can be realized by enhancing the
spin-orbit coupling in graphene through adatom doping.
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