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We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective
magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by
an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered
magnetic field of large magnitude, on the order of one flux quantum per plaquette. We study the
ground state of this system and observe that the frustration induced by the magnetic field can lead
to a degenerate ground state for non-interacting particles. We provide a measurement of the local
phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of
the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice
exposed to the magnetic field is directly revealed.

PACS numbers: 03.65.Vf, 03.75.Lm, 11.15.Ex, 73.20.-r

The application of strong magnetic fields to two-
dimensional electron gases has led to the discovery of
seminal quantum many-body phenomena, such as the
integer and fractional quantum Hall effect [1]. Ultra-
cold atoms constitute a unique experimental system for
studying such systems in a clean and well controlled en-
vironment and for exploring new physical regimes, not
attainable in typical condensed matter systems [2, 3].
However, charge neutrality of atoms prevents direct ap-
plication of the Lorentz force with a magnetic field. An
equivalent effect can be provided by the Coriolis force
in a rotating atomic gas, which led to the observation of
quantized vortices in a Bose-Einstein condensate [4]. The
regime of fast rotation, in which the atomic gas occupies
the lowest Landau level, was achieved in Refs. [5] but the
amplitude of the effective gauge field remained too small
to enter the strongly correlated regime that requires a
number of vortices on the order of the particle number
[2, 6]. An alternative route consists in applying Raman
lasers to the gas in order to realize a Berry’s phase for a
moving particle [7, 8]. The effective gauge fields gener-
ated in such a setup resulted in the observation of a few
vortices, but were still far from the strong-field regime.

In this Letter, we demonstrate the creation of strong
effective magnetic fields for ultracold atoms in a two-
dimensional optical lattice. Inspired by the proposal of
Jaksch and Zoller [9] and subsequent work [10–12], our
technique is based on atom tunneling assisted by Raman
transitions [see Fig. 1(a)]. Due to the spatial variation of
the Raman coupling, the wavefunction of an atom tun-
neling from one lattice site to another acquires a non-
trivial phase, which can be interpreted as an effective
Aharonov-Bohm phase. In our setup, the magnetic flux
per four-site plaquette is staggered with a zero mean,
alternating between π/2 and −π/2 [see Fig. 1(b)] [13].
We study the nature of the ground state in this opti-
cal lattice from its momentum distribution and show in
particular that the frustration associated with the effec-
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FIG. 1. Experimental setup. (a) The experiment consists of
a 2D array of 1D potential tubes with spacing |dx| = |dy| =
λs/2. While bare tunneling occurs along the y direction with
amplitude J , it is inhibited along x owing to a staggered po-
tential offset ∆. A pair of Raman lasers with wave vectors
k1,2 and frequency difference ω1 − ω2 = ∆/~, induces a res-
onant tunnel coupling of magnitude K whose phase depends
on position. This realizes an effective flux ±φ per plaquette
with alternating sign along x. (b) Spatial distribution of the
phase of the Raman-induced tunnel coupling realized in the
experiment. The gray shaded area highlights the magnetic
unit cell.

tive magnetic field can lead to a degenerate ground state
for single particles, similar to the prediction of Ref. [14].
We also study the quantum cyclotron dynamics of single
atoms restricted to a four-site plaquette and obtain di-
rect evidence for time-reversal symmetry breaking of the
Hamiltonian.

Our experimental setup consists of an ultracold gas
of 87Rb atoms held in a two-dimensional square lattice,
forming an array of 1D Bose gases. The lattice was cre-
ated by two standing waves of laser light at λs = 767nm
(‘short’ lattices) and a third one with twice the wave-
length (‘long’ lattice, λl ' 2λs) to generate a stag-
gered potential with amplitude ∆ as shown in Fig. 1(a).
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FIG. 2. Momentum distribution measured after a time-of-
flight of 20 ms for (a) simple cubic lattice, (b) J/K = 1.0(1)
and (c) J/K = 2.5(1). The latter two are compared with
theoretical profiles obtained by an exact diagonalization of
Hamiltonian (1) on a 31 × 31 lattice with harmonic confine-
ment [15]. Red squares in the theoretical profiles indicate
the magnetic Brillouin zone and the crosses mark the center.
(d) Projection along y of the momentum peaks located at
kx = +ks/4, as a function of J/K. For J/K <

√
2 the peaks

are located at ky = ks/4, while for J/K >
√

2 the peaks are
split due to the emergent ground-state degeneracy (see in-
sets). The solid lines correspond to the minima of the lowest
Bloch band for a translationally invariant system [15].

A pair of Raman lasers then induced tunneling along
the staggered direction. Let us consider the Raman-
assisted tunneling of an atom from a site of low energy
at R = mdx + ndy to a site of high energy at R + dx.
Assuming ω1 > ω2, one obtains K(R) = Ke−iδk·R,
where δk = 2π/λK(ek1 − ek2) denotes the wave vec-
tor [15]. The system is then effectively described by the
non-interacting Hamiltonian

Ĥ = −
∑
R

(
Ke±iδk·Râ†RâR+dx

+ Jâ†RâR+dy

)
+ h.c.,(1)

where the sign of the phase factor is positive for even
sites of x and negative otherwise.

The phase factors in K(R) can be interpreted as
Aharonov-Bohm phases. For the propagation of the Ra-
man beams shown in Fig. 1(a) along x and −y and
λK = λl, we obtain a phase factor of δk ·R = π

2 (m+ n).
Therefore the phase accumulated on a closed path around
a plaquette is equal to φ = π/2, alternating in sign along

the x direction. A different value of the flux φ could be
achieved by choosing a different wavelength for the Ra-
man lasers or by using a different angle between them, al-
lowing for a fully tunable flux per plaquette in our setup.

Our experiment started by loading a Bose-Einstein
condensate of about 5×104 atoms into a staggered 2D op-
tical lattice as shown in Fig. 1(a) with ∆/h = 4.4(1) kHz,
resulting in an array of tubes with no coherence along x
[15]. We then switched on the Raman lasers on resonance
with strength V 0

K = 0.49(1)Er to restore the coherence.
In the limit V 0

K � ∆, the amplitude of Raman induced
tunnel coupling is K ' JxV

0
K/(2

√
2∆), with Jx being

the bare tunnel coupling along x. For our experimental
parameters, this yields a value of K = 2π × 59(2) Hz,
in agreement with an independent measurement of K =
2π×61(3) Hz [15]. After holding the atoms in this config-
uration for 10 ms, we observed a momentum distribution
with restored phase coherence as shown in Fig. 2(b). This
can be attributed to a redistribution of entropy present
in the random phases between the 1D condensates into
their longitudinal modes.

To understand the momentum distribution, we calcu-
lated the bandstructure of this lattice in the tight-binding
approximation according to Ref. [14]. In the presence of
the gauge field, the Hamiltonian remains periodic. How-
ever, the magnetic unit cell contains two non-equivalent
sites, leading to a splitting of the tight-binding band
structure into two subbands [15–17]. The frustration
introduced by the position-dependent phase factors in
K(R) causes the phase of the atomic wavefunction to be
non-uniform, leading to a condensation at non-zero mo-
menta. In the case J/K = 1, we obtain a non-degenerate
ground state. However, the wavefunction itself consists
of two momentum components, therefore we observe two
diffraction peaks within the first magnetic Brillouin zone,
one being shifted by ∆k = (ks/4, ks/4) with respect to
the minimum of the dispersion relation [15]. Due to the
unit cell containing more than one lattice site, the size
of the magnetic Brillouin zone is reduced compared to
the one of the square lattice [see Fig. 3(a)]. Therefore
the ground-state momentum distribution exhibits several
peaks in the short-lattice Brillouin zone, whose measured
positions are in good agreement with the quasi-momenta
of the Bloch states of lowest energy [see Fig. 2(b)].

When varying the ratio J/K by adjusting the y-lattice
depth, we observed the positions and number of peaks
in the momentum distribution to remain unchanged for
J/K <∼ 1.4 [see Fig. 2(d)]. Above this value, additional
peaks appear [see Fig. 2(c)], which correspond to the pop-
ulation of two degenerate ground states. This behavior
agrees with the bandstructure calculation, which shows
a bifurcation at J/K =

√
2, above which the energy

minimum is split into two degenerate ground states [see
Fig. 3(b)]. We find the measured and predicted peak po-
sitions of these two ground states to be in good agreement
[see Fig. 2(d)]. The nature of the bifurcation is identical
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FIG. 3. Dispersion relation of the lowest Bloch band, calcu-
lated in the tight-binding approximation [15] for (a) J/K = 1
and (b) J/K = 2.5 and plotted for the first magnetic Brillouin
zone. The red crosses mark the positions of the correspond-
ing momentum peaks together with the ones shifted due to
the intrinsic structure of the wavefunction. (c) Histogram of
the measured fraction of atoms in peaks corresponding to the
lower momentum state for J/K = 2.5. The measurement was
performed over 172 identical experimental runs. (d)-(e) Spa-
tial distribution of the phase and atomic density (color bright-
ness) for the ground-state wave function [15]. The vortices
with different chirality in the phase distribution for J/K = 1
(d) are illustrated by the rotation of the white arrows. While
in this case the atomic density is uniform, it exhibits a charge
density wave for J/K = 2.5 (e). For the second degener-
ate ground state we observe similar behavior but the density
pattern is shifted by one lattice site.

to the one predicted in Ref. [14] where it is induced by a
variation of the magnetic flux amplitude at a fixed value
of J/K = 1. As shown in Fig. 3(d), the atomic density
is uniform for J/K = 1, while in the case J/K = 2.5
it is strongly modulated for both single-particle ground
states [see Fig. 3(e)]. For J >

√
2K the bare coupling

dominates and the phases of the atomic wavefunction
tend to align along the y direction, thereby frustrating
the phase relation imposed by the Hamiltonian. As a
consequence, the density in every second stripe along y
is suppressed. Contrary to the case of a triangular lattice
with frustrated hopping studied in [18], the atom fraction
in each single-particle ground state does not fluctuate, as
shown in Fig. 3(c), and we observe an equal population
in both states as predicted for interacting [14] or finite
size systems [19].

In order to directly reveal time-reversal symmetry

breaking of the Hamiltonian, we probed the local struc-
ture of the lattice with artificial gauge field at the level
of a four-site square plaquette, which allows us to iso-
late plaquettes with equal sign of the flux. This was
achieved by applying superlattice potentials along both
the x- and y-directions, and in order to avoid coupling to
axial modes along the potential tubes, an additional lat-
tice along the z-direction (λz = 844 nm) was used in these
measurements. The four sites of a single plaquette are
denoted as A,B,C,D [see inset Fig. 4(a)]. The relative
phases of the long and short lattices were adjusted so that
the plaquettes were symmetric along y and tilted along x,
with an energy offset ∆/h = 6.0(1) kHz. We first loaded
single atoms in the ground state of the tilted plaquettes
|ψ1〉 = (|A〉 + |D〉)/

√
2, and subsequently switched on

the Raman lasers with ~ω = ∆ in order to induce reso-
nant coupling to the B and C sites. In the limit J � K,
the dynamics along y would be suppressed and the initial
state |ψ1〉 couples to the state |ψ2〉 = (|B〉 + i |C〉)/

√
2,

where the relative phase is induced by the Raman lasers.
In our case (J/K ≈ 0.5) the evolution of the imprinted
phase factors is more complex. We measured this evo-
lution through the shape of the momentum distribution
obtained after time-of-flight [15]. This dynamics is a di-
rect consequence of the complex phase factor, revealing
the time-reversal symmetry breaking of the Hamiltonian
[see Fig. 4(a)]. For ω = −∆/~ the role of the Raman
beams is exchanged leading to a sign reversal of the phase
evolution.

We also investigated this dynamics in real space in
order to exhibit the influence of the gauge field on the
particle flow. By generalizing the site-resolved measure-
ment technique performed in [20] for an array of double-
wells to plaquettes, we measured the atom population per
site Nq (q = A,B,C,D) [15], thus obtaining the average
atom positions 〈X〉 = (−NA + NB + NC − ND)dx/2N
and 〈Y 〉 = (−NA −NB +NC +ND)dy/2N , with N be-
ing the total atom number. In the initial state |ψ1〉 the
atoms occupy the left wells A and D with equal weights.
After switching on the Raman lasers we observe a co-
herent particle flow inside the plaquettes. Besides the
particle current towards the right wells B and C [see
Fig. 4(c)], we observe a deviation of the mean atom posi-
tion along y [see Fig. 4(d)]. This behavior is reminiscent
of the Lorentz force acting on a charged particle in a
magnetic field. As shown in Fig. 4(b), the mean atom
position follows an orbit that is a small-scale quantum
analog of the classical cyclotron orbits for charged par-
ticles. This coherent evolution is damped due to spa-
tial inhomogeneities in the atomic sample. Having in-
dependently calibrated the values of J and K, we fit
from the measured atom dynamics the value of the mag-
netic flux φ = 0.73(5) × π/2. The difference from the
value φ = π/2 expected for a homogeneous lattice stems
from the smaller distance between lattice sites inside the
plaquettes when separated. For the parameters used in
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FIG. 4. Time reversal symmetry breaking and cyclotron or-
bits. (a) Phase evolution of the double-slit pattern along y
(integrated along x), as a function of time for ~ω = ∆ (blue)
and ~ω = −∆ (gray). The inset shows the Fourier transfor-
mation for ~ω = ∆ depicting two frequency components at
0.24(6) kHz and 0.62(13) kHz, in good agreement with theory
(vertical lines). (b) Cyclotron orbits of the average particle
position obtained from the mean atom positions 〈X〉 /dx (c)
and 〈Y 〉 /dy (d) for J/h = 0.50(2) kHz, K/h = 0.27(1) kHz
and ∆/h = 5.05(2) kHz. Each data point is an average over
three measurements. The inset in (b) shows the theoreti-
cal curve calculated for φ = 0.80 × π/2 and a 1/e−damping
time of 13 ms obtained from damped sine fits to 〈X〉 /dx and
〈Y 〉 /dy.

Fig. 4(b)-(d) we calculate a distance dy = 0.78(1)×λs/2
yielding φ = 0.80(1) × π/2, which qualitatively explains
the measured flux value. Residual deviations might be
due to an angle mismatch between the Raman beams
and the lattices beams.

In conclusion, we have demonstrated a new type of op-
tical lattice that realizes strong effective magnetic fields
and breaks time-reversal symmetry. We have shown that
the atomic sample relaxes to the minima of the magnetic
bandstructure, realizing an analogue of a frustrated clas-
sical spin system. However, the spatial average of the
magnetic flux is zero, hence the Bloch band is topologi-

cally trivial [10, 17, 21]. By using a superlattice potential
with more than two non-equivalent sites [10] or a linear
tilt potential [9], it is possible to create a lattice with a
uniform and non-zero magnetic flux. This system would
realize the Harper Hamiltonian [22] and lead to the frac-
tal band structure of the Hofstadter butterfly [23]. In
particular the lowest band would exhibit a Chern num-
ber of one and be analogous to the lowest Landau level
[8, 9, 12, 24]. Our work constitutes an important step
towards the study of quantum Hall effect with ultracold
atomic gases and the creation of strongly-interacting liq-
uids such as the Laughlin state [25].
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arXiv:1008.5378 (2010).

[9] D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003).
[10] F. Gerbier and J. Dalibard, New J. Phys. 12, 033007

(2010).
[11] A. Kolovsky, Europhys. Lett. 93, 20003 (2011).
[12] E. Mueller, Phys. Rev. A 70, 041603 (2004).
[13] L. Lim, C. Smith and A. Hemmerich, Phys. Rev. Lett.

100, 130402 (2008); L. Lim, A. Hemmerich and C. Smith,
Phys. Rev. A 81, 023404 (2010).
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